
Important User Information
This information is for the end user of Velmex VXM Stepping Motor

Controllers.

V
X

M
 S

te
p

p
in

g
 M

o
to

r
 C

o
n

tr
o

ll
e
r
 U

s
e
r
’s

 M
a
n

u
a
lV

X
M

 S
te

p
p

in
g

 M
o

to
r
 C

o
n

tr
o

lle
r
 U

s
e
r
’s

 M
a
n

u
a
l

VXM Stepping Motor Controller

This Manual explains the general and advanced operation of the VXM-1, VXM-2, VXM-
3, and VXM-4 stepping motor controllers.

Also included on the CDROM:
1. COSMOS utility/controller software (A user friendly Windows program for easy

2.
setup, testing, and programming of VXM controllers)
Software examples and software drivers

User’s Manual
(Extended Version)

Models VXM-1,2,3,4

Document # VXM-UM-E5 12-29-04

2

CAUTION:
Controller and AC power supply should be operating in a
well ventilated area. Do not use in a wet, dirty, or explosive
environment. In industrial environments, repackaging into
a NEMA grade enclosure is required.

Do not disconnect motor while running. Keep Motor and
Limit cables minimum of 2” apart . Only operate with
designated motor. Do not alter cables in any way without
first consulting Velmex

!

!

!

! WARNING:

TO REDUCE THE RISK OF ELECTRICAL SHOCK, DO
NOT ATTEMPT TO REMOVE COVERS ON POWER
SUPPLY OR CONTROLLER. THERE ARE NO USER
SERVICEABLE PARTS INSIDE. Any servicing should be
done by Velmex qualified service personnel.

CAUTION:
THE VXM MUST BE SET TO THE EXACT
MODEL/TYPE MOTOR(S) BEFORE
OPERATING.
IMPROPER SETTINGS CAN CAUSE
SEVERE DAMAGE TO MOTORS AND
CONTROLLER.
Use Velmex COSMOS software to
configure VXM before use.

CAUTION:
MOTOR(S) GET HOT WHEN RUNNING.
Motor(s) must be mounted to a metal surface
to dissipate internal heat.

Precautions

!! CAUTION
Mismatched Motor
Settings Damage
Motor & Controller

Motors mounted to Velmex actuators/positioners will usually provide
sufficient heat dissipation. Motor surface temperature should not exceed

152 F (70° C.) In continuous duty applications when the motor is not
mounted to a suitable heat dissipating device, motor surface temperature
could exceed

°

152 F (70°° C.)

3

Table of Contents

Precautions.........................2

Features..............................4

Front VXM...........................5

Back.VXM...........................5

RS-232 Port........................5

Auxiliary I/O.........................6

Motor wiring........................6

Limit Switch wiring..............6

Setup...................................7

Jog Mode............................7

Optional Joystick.................7

Communication Methods....8

Linking VXMs for 3 & 4

Motors...............................10

Units & Directions..............11

Command Summary

(Common Commands)......12

Command Summary

(Advanced Commands)....14

Command Reference

(Common Commands)......16

.........16

...................19

...................20

...................22

...23

....................24

.........25

Examples..........................26

Troubleshooting................30

Specifications....................31

COSMOS Software...........31

Warranty...........................

Contact Information..........

Motor Commands

Program Management

Commands

Looping/Branching

Commands

Pausing & I/O

Commands

Operation Commands

Status Request

Commands

Setup Commands

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Complex Profiles & Coordinated Motion...4

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

Appendix N

Appendix O

Appendix P

Appendix Q

Appendix R

Appendix S

Appendix T

Editing/Debugging Tools.........................32

Advanced Input/Output...........................34

The Multifunction User Inputs.................38

Producing Trigger Outputs.......................

Getting Motor Position When Moving......4

More Feedback/ Precision.......................4

Advanced Jog Mode................................

The Analog Input.....................................5

The Analog Joystick Option.....................5

I/O Electrical Specifications.....................

Motor Torque Curves...............................6

Advanced Motor Setup.............................6

Limit Switches and Home Switches.........6

Controller Mode.......................................

VXM Comparison to NF90/ VP9000........

Outline Dimensions...................................7

Model Configurations................................

Pick-and-Place with JM-x..........................

Stand-alone Methods to Select/Alter

Program..

4

Features

The VXM is a high performance, advanced design stepping motor controller.
High reliability, and consistent performance are achieved by these design
features:

Single chip microcontroller (MCU) digitally controls the motor phase switching
and all other interface functions (noise sensitive step and direction translation
circuitry are eliminated)

Pulse width modulated timing is preset by the MCU, eliminating error prone
analog feedback circuits

Regulated power supply with a 100 to 240VAC input range assures consistent
motor output torque

4X oversize motor drives for long life and overload tolerance

A single VXM can accept and execute commands for operating 4 motors

Complete Controller/Indexer/Driver/AC Power Supply with RS-232 interface

Modulated current control drive has less low speed vibration than typical 400

step/rev controllers

Nonvolatile memory for user program storage

Included external desktop type power supply is UL, CE, CSA, and TUV safety
agency compliant

One and two motor versions. Three and four motor capability with two
Controls linked by the VXM bus

Backward compatible with Velmex NF90 and VP9000 Step Motor controllers

User programmable inputs and outputs

10 bit analog input for external sensor, setting speed, or for analog joystick

control

Runs 6 or 8 lead permanent magnet step motors rated from 0.4 to 4.7 amps

Jog, Run, and Stop input buttons on front panel

Use interactively with a PC or run standalone

Optically isolated limit switch inputs

User resettable circuit breaker protected

Software settable motor power and motor model selection

Low voltage 24VDC operation

Energy saving design, automatically de-energizes motors at a standstill,

consuming only 1.4 watts

FIFO buffer to capture motor positions on external trigger

Special commands for matrix/array patterns and pick-and-place applications

Conditional commands to skip or not to skip next command on input state

Coordinated motion with two VXMs

Complex motion profiles with “continuous index mode”

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Open-loop positioning controller.·

RS-232 Port

5

RS-232

12345

9 8 7 6

The RS-232 port will connect directly to a COM
port of a PC with a straight through 9 pin serial
cable (10 foot cable included with the VXM.)

Pin Assignments:

1 N/C
2 T x
3 R x
5 Gnd
4
6
7
8
9 N/C

N/C = No Connection

Over Current
Protection

External DC Power Supply
Input Connection
(To Lambda
DT60PW240P)

Serial RS-232 Port

Cable to Motor 1

Cable to Motor 2

Cable to Limit
Switches for Motor 1

Cable to Limit
Switches for Motor 2

Auxiliary Inputs
and Outputs

Rear

Host Computer
Controlled Indicating
LED

Power Switch
(Press right side
is On)

Power
Indicating LED

Start Internal
ProgramStop/Interrupt

Program

Bus connection to
second VXM for
3 and 4 motor operation

Moves Motor 1
CCW

Moves Motor 2
CCW

Moves Motor 1
CW

Moves Motor 2
CW

VXM Stepping Motor Controller
www.velmex.com

VXM
Bus

On-Line Jog 1 Jog 2
Stop Run Local - + - +

+ +

++

Front

9DSUB Socket

DC24V 2.5A

Motor 2 Motor 1 Circuit Breaker Limits 1 Limits 2

IOIOI
RS-232 I/O

Bloomfield,
NY, USA

Model VXM-2

Serial # 020835

2.5

+ +

++

Pin Cable

Inner Switch
(Motor End)*

1 C W

2 R

Outer Switch
(End Plate)

3 Gn

4

NC

NC

C Bk

Pin# Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Pin Motor Cable
(6 wire)

Slo-Syn Vexta Pacific
Scientific*

1 BC W W W W/Y & W/R

2 B2 Gn Bu R

3 AC Bk Y W/Bk & W/O

4 A2 W/R Bk O

5 A1 R Gn Bk

6 B1

Gn

Bk

Or

R

Bu W/Gn R Y

Motor Wiring (for Velmex installed step motors)

* 8 lead motor with wires combined at AC and BC
for 6 lead configuration

A1

AC

A2

B1 BC B2

Step Motor

123

456

Amp 1-480705-0
(mates with: 1-480704-0 on Cable)

Connector
on Motor

6

Limit Switch Wiring
3 2 1

* Negative direction on VXM controllers

Connector on
Switch Harness

Amp 1-480703-0 (mates with: 1-480702-0)

Switches are wired on the normally closed (NC) terminals.

CAUTION: The VXM puts 24VDC on the limit switches,
do not connect limit inputs to any +5V logic devices

C

NC

NO

Auxiliary I/O Connection
I/O

12345

1112131415

10
9 8 7

6
The I/O connections can be used for signaling external
equipment or waiting for an external signal. The front
panel button inputs are also available on the I/O
connector for remote jog, run, and stop.

0V
+5V
Ain
Run
I1
I2
I3
I4
0V
J1-
J1+
J2-
J2+
O1
O2

Function
Logic reference ground for inputs and outputs
+5VDC for Joystick power and other external logic (75mA max. output)
Analog input for Joystick, speed setting, or analog sensor.
Run input to start program, same input as Run button (active low)
Input 1 (active low)
Input 2 (active low)
Input 3 (active low)
Input 4 and Stop (Same as Stop button on front panel) (active low)
Logic reference ground for inputs and outputs
Jog Motor 1 CCW (Same as front panel button) (active low)
Jog Motor 1 CW (Same as front panel button) (active low)
Jog Motor 2 CCW (Same as front panel button) (active low)
Jog Motor 2 CW (Same as front panel button) (active low)
Output 1 (normally low)
Output 2 (normally low)

NOTE: All inputs and outputs are TTL levels (0 to +5VDC.) Inputs have resistive
pull-ups, and are activated by connecting to 0V. Outputs are normally low, and can
sink and source 20 mA max. For more information refer to Appendix K.

15DSUBHD Socket

4

When the On-Line (yellow) light is not lit, the VXM is in the Local/Jog mode. Using the
front panel jog buttons, each motor can be jogged a single step or slewed to 2000 sps (5
revs/sec.) in either direction.
When a Jog button is pressed the motor moves 1 step (1/400 rev.) If the button is held
for >0.3 second the motor will accelerate to 2000 sps . Pressing Stop while using the
Jog buttons will hold the speed at 39 sps.
Refer to the “setj” and “setJ” commands in Appendix H for more information about
setting jog speeds to different values.

7

Setup

Jog Mode

Optional Joysticks
There are two types of external joysticks available for the VXM. One is digital that
functions like the front panel jog buttons, and the second is an analog proportional speed
type that can operate up to 4 motors with 2 VXMs For more information/configuration
refer to Appendix H and J.

1. Connect the cables to motors and limit switches (if actuator has limit switches.)
Connect the 9 pin serial cable from the VXM’s rear panel connector labeled "RS-232" and
your computer's serial port (usually labeled “COM” or “|O|O|”.) For computers with only
USB ports, use a USB to RS-232 adapter.

Motor cables should never be bundled together with the Limit Switch, or any
I/O cabling. put any of the VXM's cables with power cables in a common electrical

keep Limit Switch and I/O cables at least 2 inches from Motorconduit or ducting.
and Power cables.

CAUTION: Motor cable length or connectors should not be altered without consulting
Velmex first. Improper wiring can result in poor performance and damage to the VXM.
Altered cables and resultant damage is not covered by the warranty.

IMPORTANT: The VXM can automatically detect limit switch inputs that are wired
normally closed to operate (motor stops on open circuit.) Normally closed is the standard
used on all Velmex products. However, Velmex rotary tables with the home switch option
requires that the limit switch inputs be reconfigured in setup. Refer to the “setL”
command in Appendix N.

Never connect or disconnect motors with the power on, this can result in
severe damage to motor drive electronics.

2. Connect cable from DC power supply to VXM
3. Plug the DC power supply into a AC outlet.
4. Turn on the VXM by pushing the right side of the rocker switch located on the front
panel.

5. Initially the VXM is set for no motors selected (very low power, motors buzz but will

CAUTION:
Never

Always

CAUTION:

not move.) Use the COSMOS software included on the CDROM to set VXM for the
proper motors. If your computer is not a Windows based system, refer to the “setM”
command in the reference section of this manual.

Both On-Line and Power LEDs will light for 1 second, the On-Line will go out,
then the Power LED will flash 6 times.

8

+ +

++

Stepping Motor Controller
wwwwww.velmex.com.velmex.com

Bus
Bus

VXMVXMStop Run
On-Line

Local - -+ +
Jog 1 Jog 2

Windows running
Velmex COSMOS,
or Windows
HyperTerminal

E“ ”
command
:
:
:
R“ ”

wait for “^”
C“ ”
¬

�

RS-232 Interactive Mode

The VXM can be controlled in an interactive mode. Interactive mode is when a host
computer sends only the commands necessary to perform a single operation (usually an
Index), then the host will wait for the VXM to finish before sending any additional commands.
The following procedure would be used for running the VXM in an interactive mode:

1.
2.
3.
4.
5.

The host puts the VXM On-Line by sending an "F"
The host sends a"N" to zero position registers if necessary
The host sends speed, and acceleration if necessary
The host sends an Index ("I" command)
The host sends a"R" to start the Index

6. The host then will wait until it receives a ready prompt (" ") from the VXM
: The VXM does not send a carriage return or line feed following the "^", refer

to the "G" command in
7. The user's routine for outputting, measuring, etc. would be executed by the host
8. A "C" would be sent from the host to clear the previous Index command from the

9.
VXM's memory
The process is repeated from step #3

^
NOTE

Communication Methods

Programming of the VXM is accomplished by sending commands (ASCII characters) to
the VXM through the RS-232 interface. The simplest method to send commands is with
the Velmex COSMOS program, or with HyperTerminal in Microsoft Windows.

Another method to send commands is with commercially available languages such as
VisualBASIC, C, LabVIEW, etc.

To put the VXM in the On-Line mode/programming mode, the host must send either an

The "E" puts the VXM on-line with echo "on" (echoes all characters received back to the
host). The "F" puts the VXM on-line with echo "off". If you are using HyperTerminal to
communicate to the VXM use the "E" so typed characters will be displayed. When using a
software language to send commands, use the "F" so the host’s input buffer will not be
burdened with echoed characters from the VXM.

NOTE: All command characters are case sensitive

9

Index Motor 1 Example

+ +

++

VXM Stepping Motor Controller
www.velmex.com

VXM On-line -- Jog 1 -- -- Jog 2 --
Bus Stop Run Local - + - +

+ +

++

VXM SteppingStepping MotorMotor ControllerController
wwwwww.velmex.com.velmex.com

Bus
Bus

VXMVXMStop Run
On-Line

Local - -+ +
Jog 1Jog 1 Jog 2

+ +

++

VXM SteppingStepping MotorMotor ControllerController
www.velmex.com

Bus
Bus

VXMVXMStop Run
On-Line

Local - -+ +
Jog 1 Jog 2

VisualBASIC, C,
LabVIEW, etc.

F“ ”
command
:
:
:
R“ ”

wait for “^”
C“ ”
¬

command
:
:
:
:
:
rsm“ ”

RS-232 Download/ Stand-alone Mode

Entire programs can be transferred to the VXM over the RS-232 interface. When a
program(s) has been downloaded to the VXM, it will keep the program(s) in memory until a
clear (”C”) command is used. To prevent loss of program data when power is turned off,
program memory can be permanently saved by using the “rsm” command. The ability to
retain programs allows the VXM to be used in a stand-alone mode. In a stand-alone mode
the operator starts the program by Run button located on the front panel, or by using the Run
input on the I/O connector.

�

Send commands
and permanently
save them in
VXM with “rsm”
command

VXM holds program(s) that can be activated with the
Run input. The default program to run is program 0.
Inputs 2 and 3 can configured to binary select and run
programs 0 to 3.

¬

¬

¬

Enable On-Line mode with echo on

Incremental Index Motor #1 +400 steps (1rev.)

Run Index

Comments can be included using a semicolon: (Never use comments after “R”)

Commands can be on the same line, separated by commas, spaces are optional:

Graphic Representation: ®
start end

Two controls linked together by the VXM bus make it possible to run 3 or 4 motors with

all programs residing in one VXM, and all communication from a host with this one VXM.

(Input 4.)

The VXM bus is a serial bus conforming to the I C specification. This bus is used to

transfer data back and forth between two VXM controls that are configured as Master

and Slave.

Use only a Velmex approved cable for the bus connection, telephone handset cables

will not work. Telephone cables reverse the 1 and 4 connection, a straight through cable

is required.

Bus cables should be short and not be near other cables or electronic devices.

By default all VXMs are Slaves.

To link VXMs, one control should be set to be a Master (see Control Mode

"setDM" in the Appendix O.) The Velmex COSMOS program will configure the VXMs

for Master/Slave operation.

A designated Master will attempt to establish communications to a Slave on power-up.

If the Master can not find the Slave it will try again when it is required to send a motor 3

It is normal for the Slave not to flash its power light (green LED)

at power-up.

A bus error will occur (”ËB” sent to host and VXM resets) if the Master can not find the

Slave, either because there is not one connected, or it is not powered.

The Master is the VXM that runs motors 1 and 2, communicates with a host, and can

be started with the Run input and stopped with the Stop input

The Slave runs motors 3 and 4 (The Master assigns motors 3 and 4 to motors 1 and 2

on the Slave) and receives all commands over the VXM bus from the Master.

· The Master disables the Run, Stop, and RS-232 inputs on the Slave.

2

Considerations when linking VXM controls together:

or 4 command. NOTE:

·

·

·

·

·

·

·

·

Linking VXMs for 3 & 4 Motors (VXM-3,4)

10

+ +

++

VXM SteppingStepping MotorMotor ControllerController
www.velmex.com

Bus
Bus

VXMVXMStop RunRun
On-LineOn-Line

LocalLocal- -+ +
Jog 1 Jog 2

+ +

++

VXM SteppingStepping MotorMotor ControllerController
wwwwww.velmex.com.velmex.com

Bus
Bus

VXMVXMStop Run
On-Line

Local - -+ +
Jog 1Jog 1 Jog 2Jog 2

M2 M4
M1 M3

L2 L1 L4 L3

Master Slave

VXM Bus Cable
Part # 4-2122

Index Motor 3 Example

Graphic Representation: ®
start end

¬Clear previous entries, Index Motor 3 +400 steps

NOTE: Slave RS-232 port is not used

Unit Conversion for Velmex Positioners

* Typical UniSlide model (where x is from above table): MB4024xJ-S4

Example #1: To move 3.000 inches with the BiSlide E04 lead screw (3.000 ÷ 0.001 = 3,000) requires a 3,000 step
index.
Example #2: To move 90 degrees with the B5990 rotary table (90 ÷ 0.01 = 9,000) requires a 9,000 step index.
Example #3: To move 4.000 inches with the UniSlide W1 lead screw (4.000 ÷ 0.00025 = 16,000) requires a 16,000
step index.

Other formulas:
1 Motor rev = 400 steps
Linear Speed = Advance per step x steps per second
Rotary Speed = Advance per step x steps per second
Steps per second ÷ 400 = rev/sec

** Typical BiSlide model (where x is from above table): MN10-0100-x-21

To convert from "real" units to steps, divide the distance desired to move by the

Advance per step. (Distance ÷ Adv per step = Steps)

11

The VXM uses step units for Index and Speed parameters. One step is 1/400 of a motor
revolution. Step units for distance are used with the Index commands (”I” command.)

Speed is in units of Steps/ Second (SPS.) Steps/ Second units for speed are used with
the Speed commands (”S” command.)

Acceleration commands (”A” command) are values from 1 to 127 that are relative to
steps/sec units. Refer to Application Note #106 for more information about acceleration
units and move profiles.

2

Direction is relative to the device the motor is used on. On screw drive actuators like
UniSlides and BiSlides, positive is the direction moving away from the motor.
On worm gear type rotary tables like the Velmex B4800 or B5990, positive is counter
clockwise (CCW.) To reorient directions refer to the “setDM” command in Appendix
O.

Units & Directions

Positive ®

Positive
CCW

Positive
CW

Worm Gear
Rotary TableScrew Drive ActuatorMotor

Lead Screw Models
UniSlide* BiSlide** Advance per turn Advance per step

Speed
@ 1000 SPS (2.5 rev/sec)

Units Units

C P40 E25 0.025 inch 0.0000625 inch

Units

0.0625 inch/sec

B P20 E50 0.0001250 inch

W1 P10 E01 0.0002500 inch

W2 P5 E02 0.0005000 inch

W4 P2.5 E04

0.05 inch

 0.1 inch

 0.2 inch

0.4 inch 0.0010000 inch

0.125 inch/sec
0.25 inch/sec
0.5 inch/sec

1 inch/sec

K1 Q1 M01 1 mm 0.0025 mm 2.5 mm/sec

K2 Q2 M02 2 mm 0.0050 mm 5 mm/sec

Rotary Tables
Gear Ratio

B4872 72:1 5 degree 0.0125 degree 12.5 degree/sec

B4836 36:1 10 degree 0.0250 degree 25 degree/sec

B4818 18:1 20 degree 0.0500 degree 50 degree/sec

B5990 90:1 4 degree 0.0100 degree 10 degree/sec

Command Summary (Common Commands)

12

Motor commands:

Program management commands:

Looping/

Pausing and input/output commands:

I

16,777,215
Set steps to incremental Index motor CCW (negative), m= motor# (1,2,3,4), x=1
to 16,777,215
Set Absolute Index distance, m=motor# (1,2,3,4), x= ±1 to ±16,777,215 steps
Index motor to Absolute zero position, m=motor# (1,2,3,4)
Zero motor position for motor# m, m= 1,2,3,4
Index motor until positive limit is encountered, m=motor# (1,2,3,4)
Index motor until negative limit is encountered, m=motor# (1,2,3,4)
Set Speed of motor (70% power), m= motor# (1,2,3,4), x=1 to steps/sec.
(SAmMx is 100% power)
Acceleration/deceleration, m= motor# (1,2,3,4), x=1 to 127.

AmMx
IAmM0
IAmM-0

ImM-0

AmMx

L0

LM-0
Lx

L-x

LAx
LA-x

LM-2
LM-3

ImMx

ImM-x

PMx
PM-x
PM

Jx
JMx

Px

PAx

U0
U1
U4
U5

Set steps to incremental Index motor CW (positive), m= motor# (1,2,3,4), x=1 to

Select Program number x, x= 0 to 4
Select and clear all commands from Program number x, x= 0 to 4
Request the number of the current Program

branching commands:
Loop continually from the beginning or Loop-to-marker of the current program
Sets the Loop-to-marker at the current location in the program
Resets the Loop-to-marker to the beginning of the current program
Loop from beginning or Loop-to-marker x-1 times (x=2 to 65,535), when the loop
reaches its last count the non-loop command directly preceding will be ignored
Loop from beginning or Loop-to-marker x-1 times, alternating direction of motor 1,
when the loop reaches its last count the non-loop command directly preceding will
be ignored
Loop Always from beginning or Loop-to-marker x-1 times (x=2 to 65,535)
Loop Always from beginning or Loop-to-marker x-1 times, alternating direction of
motor 1
Loop once from beginning or Loop-to-marker reversing index direction of motor 2
Loop once from beginning or Loop-to-marker reversing index direction of motor 1
and motor 2
Jump to the beginning of program number x, x= 0 to 4
Jump to the beginning of program number x and come back for More after
program x ends, x= 0 to 4

Pause x tenths of a second, (x=0 to 65,535) tenths of a millisecond when x is
negative
Pause x tenths of a second (x=0 to 65,535, 10 μsec pause when x=0) Altering
output 1 high for duration of the pause, tenths of a millisecond when x is negative
Wait for a "low" on user input 1
Wait for a low on user input 1, holding user output 1 high while waiting
User output 1 "low" (reset state)
User output 1 high

ImM0

SmMx

LM0

6000

The following are the most common commands, refer to page 14 for an additional listing
of commands for advanced users.

13

Operation commands:

Status request commands

Q
R
N
K
C
D
E
F

:

X
Y
Z
T
M

Quit On-Line mode (return to Local mode)

Jog/slew mode, or “b” if Jog/slewing
Send current position of motor 1 to host (Motor can be in motion)

position of motor 2 to hostSend
Send
Send

position of motor 3 to host
position of motor 4 to host

Request Memory available for currently selected program

rsm

V

lst
getMmM

Setup commands:
setMmMx
setBx

Run currently selected program
Null (zero) motors 1,2,3,4 absolute position registers
Kill operation/program in progress and reset user outputs
Clear all commands from currently selected program
Decelerate to a stop (interrupts current index/ program in progress)
Enable On-Line mode with echo "on"
Enable On-Line mode with echo "off”
Run save memory (saves setup/ program values to nonvolatile memory)

Verify Controller's status, VXM sends "B" to host if busy, "R" if ready, "J" if in the

current
current
current

(Motor can be in motion)
(Motor must be stationary)
(Motor must be stationary)

List current program to host (ASCII text)
Read motor type/size selected for axis m

Set axis m for motor type/size x.
Set RS-232 Baud rate (9=9600, 19=19200, 38=38400)

Command Summary (Advanced Commands)

14

The following commands are for advanced VXM users.
commands refer to Appendices in this User’s Manual.

For more information on these

Motor commands:

range (SAmM-x is 100% power)
Program management commands:

(available only on VXM firmware versions 1.20 & up)
Input/output commands:

SmM-x

PMAx

PMA

JM-x

U2
U3
U6
U7
U77
U8
U9
U91

U92
U99
U11
U12
U21
U22
U13

U14
U15
U16
U17
U18
U19
U23

U30
U31

U32
U33
U50

U51

U90

Read and assign analog input value to motor m speed (70% power), x=speed

Program Associate program x in Master to program x in Slave (Linked VXMs start
the same time)
Request the current program associate number

Similar to JMx except automatically moves back from absolute indexes after
program x ends: For pick-and-place within matrix looping patterns

Enable Jog mode while waiting for an input
Disable Jog mode while waiting for an input
Send "W" to host and wait for a "G" to continue
Start of Continuous Index with pulse on output 2
Start of Continuous Index with no output
Start of Continuous Index sending "@" to the host
End of Continuous Index with autodecel to stop
End of Continuous Index with auto-generate a deceleration Index as next
command
End of Continuous Index using next Index for deceleration to stop
End of Continuous Index with instantaneous stop
Skip next command if input 1 is high
Skip next command if input 2 is high
Skip next command if input 1 is low
Skip next command if input 2 is low
Wait for a front panel button to jump to a program or continue: "Motor 1 Jog -"
button to jump to program #1, "Motor 1 Jog +" button
to jump to program #2, "Run" button to proceed in current program.
User output 2 low (reset state)
User output 2 high
Optional User output 3 low (reset state)
Optional User output 3 high
Optional User output 4 low (reset state)
Optional User output 4 high
Wait for a front panel button to jump to a program and come back, or continue:
"Motor 1 Jog -" button to jump and return to program #1, “Motor 1 Jog +" button
to jump and return to program #2, "Run" button to proceed in current program
Wait for a low to high transition on user input 1
Wait for a low to high transition on user input 1, holding user output 1 high while
waiting
Wait for "Motor 1 Jog -" button to be pressed on front panel with debouncing Wait
for "Motor 1 Jog +" button to be pressed on front panel with debouncing Wait for a
low and high on user input 1 with debouncing for a mechanical push-button switch
Wait for a low and high on user input 1 with debouncing for a mechanical push-
button switch, holding user output 1 high while waiting
Wait for a low to high on the Run button or connection I/O,4 with debouncing for a
mechanical push-button switch

Branching commands:

(available only on ver. 1.22 & up)
(available only on ver. 1.22 & up)

(available only on ver. 1.30 & up)
(available only on ver. 1.30 & up)

15

Operation commands:

Status request commands:

G

H
!
res
del

x

y

#

?
~
$
@
B
O
getDx
getDA
getjmM getjAmM

getJmM getJAmM

getLmM
getPmM
getPA
getI

(i3,i1..)

[i1,i2...]

:
D

Bx
Ox

setDMx
setDAx
setjmM setjAmM
setJmM setJAmM
setLmMx
setPmMx
setPAx

setIx

Enable On-Line mode with echo off Grouping a <cr> with "^", ":", "W", "O"
responses; Also Go after waiting or holding
Put Controller on Hold (stop after each command and wait for go)
Record motor positions for later recall with “x”,”y” commands
Software reset controller
Delete last command

Send last 4 positions of motor 1 to host that were captured by the “!” command or
Input 4 trigger
Send last 4 positions of motor 2 to host that were captured by the “!” command or
Input 4 trigger
Request the number of the currently selected motor
Request the position when the last motor started decelerating (shows position
when "D" command or Stop/User input 4 used)
Read state of limit switch inputs for motor 1 and 2 (8 b i t binary value)
Read state of User Inputs, Motor 1 and 2 Jog Inputs (8 bit binary value)
Read state of User Outputs (8 bit binary value) (only on ver. 1.22 & up)
Read user analog input value
Read Backlash compensation setting
Read Indicate limit switch setting
Read mode/version
Read Joystick Deadband setting
Read first range Jog Speed for motor m. for Joystick range
setting
Read second range Jog Speed for motor m. for Joystick
range setting
Read mode of limits for motor m
Read “Pulse Every x # Steps” value for axis m Read Pulse width used
by setPmMx and U7 (only on ver. 1.24 & up) Read operating mode
of user inputs

Combine Index commands to run simultaneously on two VXM controllers
connected by VXM bus
Send data to Slave through Master

Read motor position (Digitize)

Backlash compensation, 0= off (default), 1= 20 steps, Ver. 1.25 up: x=0 to 255
Indicate limit switch Over-travel to host, off when x=0, VXM sends "O" when x=1
and hit limit, x=3 program stops too
Set VXM/VP9000 or NF90 emulation modes, and other operating parameters
Set Joystick Deadband value
Set first range Jog Speed for motor m. for Joystick range setting
Set second range Jog Speed for motor m. for Joystick range setting

Set limit switch mode for axis m
Set “Pulse Every x # Steps” on output 2 for axis m Set Pulse width used

by setPmMx and U7, x=1 to 255 (10 �sec increments)(available only on
versions 1.24 & up)
Set operating mode of inputs

�

Commands for two controls connected by VXM bus:

Jog mode commands

Special function and setup commands:

Command Reference (Common Commands)

16

This section gives detailed explanations of the most common VXM commands. For the
advanced user, refer to the Appendices for more information.
Most commands with variables (except set commands) use the VXM's program memory
space. The required memory needed per command is specified in this section. The VXM
has 256 bytes of program memory for each program. There are 5 (0,1,2,3,4) programs. A
program can be cleared by a "C" and selected by the "PMx" command. The default
program when the VXM is powered up is #0. Using different programs is only relevant to
users who will be operating the VXM in a stand-alone mode (P8.) Using the VXM in a
RS-232 interactive mode (P9.) would only require that the default program be cleared
after the R command.

An absolute Index is, a move relative to absolute zero position, a distance and direction
from the present position calculated by the VXM based on absolute zero position.
Absolute zero is established when the VXM is powered-up, by use of the "N", or the

" command.

Sending Commands to the VXM:
The standard RS-232 communication settings on the VXM are 9600 baud, 8 data, no
parity, and 1 stop bit.
When sending commands that require a value, the commands must end with a carriage
return (Enter key or Return on most keyboards), comma, or a period.

Set steps to incremental Index (move) motor CW (positive, Slider/Carriage
will move away from motor end , Rotary Table will rotate CCW), =motor#
(1,2,3,4), x=1 to 16,777,215.

.
The "<cr>" is a carriage return character (<Enter> key

on most keyboards). Command characters are in LARGE BOLD.
<cr>
<cr>

This example sets motor 1 to index 1200 steps CW:
This example sets motor 2 to index 9200 steps CW:
This example sets motor 3 to index 10200 steps CW: <cr>

This example sets motor 1 to index 120 steps CCW: <cr>
<cr>This example sets motor 2 to index 20 steps CCW:

This example sets motor 4 to index 1 step CCW: <cr>

"IAmM-0

Memory usage =
Examples:

4 bytes
NOTE:

I1M1200
I2M9200
I3M10200

Set steps to incremental Index (move) motor CCW (negative, UniSlide Slider
will move toward motor end , UniSlide Rotary Table will rotate CW), m= motor#
(1,2,3,4), x=1 to 16,777,215.
Memory usage = 4 bytes.
Examples:

1M-120
I2M-20
I4M-1

IA1M2200

m

The Difference Between Incremental and Absolute Indexes:
An incremental Index is, a move relative to the present position, a distance and direction
specified by the Index from the present position.
Incremental: I1M1200 start end

Absolute: start end

Absolute Position 0 1000 2200

Absolute Position 0 1000 2200

Motor Commands

ImM

ImM-

17

position registers have a range of -8,388,608 to 8,388,607 steps, x should not be
set to any number less than -8,388,608 or greater than 8,388,607.
Memory usage = 4 bytes.
Examples:
This example sets motor 1 to index to absolute position 1200 :

IA1M1200<cr>
This example sets motor 4 to index to absolute position -90200 :

IA4M-90200<cr>

IAmM0 Moves I
command is used the VXM calculates the distance and direction to get back
to absolute zero position. The "absolute zero" position was established when the
"N" (Null Absolute Position Registers), "IAmM-0" command was used, or when
the VXM was powered up. (Moves to last known zero, unless control was power
off. The position when powered-off becmes zero.)
Memory usage = 4 bytes.
Examples:

This example sets motor 1 to index to absolute zero position:
IA1M0<cr>

This example sets motor 2 to index to absolute zero position:
IA2M0<cr>

This example sets motor 3 to index to absolute zero position:
IA3M0<cr>

IAmM-0
clears the position register for the motor selected, making this position absolute
zero. The display will show all zeros for the motor selected.
Memory usage = 4 bytes.
Examples:
This example makes the present position for motor 1 absolute zero:

IA1M-0<cr>
This example makes the present position for motor 2 absolute zero:

IA2M-0<cr>

Move positive until the positive limit switch is encountered (Home to Positive
Limi), m=motor# (1,2,3,4). If the limit switch input was disabled in setup, the
limit switch input will be re-enabled for the duration of this command. The Index
will end if the limit switch is not encountered after 16 million steps.

4 bytes.
This example sets motor 1 to seek the positive limit switch:

<cr>

Move negative until the negative limit switch is encountered (Home to
Negative Limit), m=motor# (1,2,3,4). If the limit switch input was disabled in
setup, the limit switch input will be re-enabled for the duration of this command.
The Index will end if the limit switch is not encountered after 16 million steps.

4 bytes.
This example sets motor 1 to seek the negative limit switch:

<cr>

Memory usage =
Example:

I1M0

Memory usage =
Example:

I1M-0

ImM0

ImM-0

18

6000 steps/sec. in 1 step/sec. intervals. If this command is never used, the
default speed will be 2000 steps/sec.

NOTE: motor torque decreases as speed increases, and some motors have
limited torque above 2000 steps/sec. If the motor torque is below the needed
torque to move the load, the motor will stall (lose synchronism and proper
position.)
Memory usage = 3 bytes.
Example:
This example sets the speed of motor 1 to 500 steps/sec at 70% power:

S1M500<cr>

When the "S" speed command is used for setting speed, motor running torque will be
70% of the maximum output. For most applications 70% motor torque will be adequate.
For moving heavy loads the "SA" speed command (100% power) may be needed.

Motor power will always be zero when the motor is stationary (motors are
normally un-energized at a standstill.

Saves energy.1.
2.
3.
4.

Motors run smoother and quieter
Reduces mid-speed motor resonance.
Reduces Motor and Controller heating.

to 6000 steps/sec. in 1 step/sec. intervals.
Example:
This example sets the speed of motor 2 to 3000 steps/sec at 100% power:

SA2M3000<cr>

With acceleration set to 2 (default) increase speed
until motor stalls, use 75% of this speed as the maximum speed.

: Motor and Controller surface temperatures become hot when running motors
continuously. Only use 100% (" " command) motor power if maximum torque is
required. For maximum efficiency when lifting heavy loads vertically, use the "SA”
command to set speed for traversing upwards, and use the "S" speed command for the
speed down.

is 2. The higher the number used, the faster the motor will reach the set speed,
and the faster it will slow down to a stop. : motors may stall if this value is
set to high.
Memory usage = 2 bytes
Example:
This example sets the acceleration/deceleration of motor 1 to 3:

A1M3<cr>

With speed set to maximum as determined
increase acceleration until the motor stalls, use 1/2 of stall acceleration as theabove,

maximum

NOTE:

Advantages of the "S" speed command (70% motor power)

How to Determine Maximum Speed:

CAUTION
SA

NOTE

How to Determine Maximum Acceleration:

See Application Note #106 for more information about acceleration.

19

A2,S4000,I400,

I2M200,I-200,S2000,IA0,

PM1

PM-0

Programming Shortcut:
The motor designation in Acceleration, Speed, and Index commands is optional if the
desired motor has already been set as the current motor. The current motor is motor 1
when the Controller is first turned on. The last motor jog/slewed will be the current motor
number. The current motor will be the number used in the last Acceleration, Speed, or
Index command. Users that have only a one motor VXM (Model VXM-1) do not have to
use the motor designation in a command. For example, these commands would always
be motor 1 commands of a one motor VXM:

For running a particular motor of a multi-motor VXM, only the first Command needs the
motor number. For example, all of these commands would be for motor 2:

Example:
This example selects program #1 for the current program:

<cr>

command will select program x as the current program and delete all commands
from this program.
Memory usage = 0 bytes. This command is immediate (not stored)

Example:
This example selects program #0 and erases all commands within it:

<cr>

PM

PMx

x

hold 256 bytes of commands. The default program number is 0.
Program 3 can be interactive with user input 3, and Program 4 can be interactive

for more information.
Memory usage = . This command is immediate (not stored)

<cr>

<cr>

‘setI

0 bytes

Request the number of the current program. the VXM will send a value between

0 and 4 indicating the program number selected.

Example:
PM

3

-

PM

Program Management Commands

with user input 4. See the ” command in the Reference Manual on the
CDROM

:

20

Looping/Branching Commands

L0

LM0

LM-0

L

L-

LA

Loop continually from the beginning or Loop-to-marker of the current program.
The loop will occur to the last Loop-to-marker of the current program if it was set
previously. This command can be used once in a program as the last command,
it functions the same as a "continuous run input".
Memory usage = 1 byte.

Loop from beginning or Loop-to-marker of the current program -1 times
65,535). A maximum of 10 nested loop commands can be used per run.
NOTE: When the Loop reaches its last count, the non-loop command directly
preceding the Loop will be ignored.
Memory usage = 3 bytes.
Example:
This example sets a loop to repeat, any previous commands 4000-1 times, while
repeating the directly preceding non-loop command 4000-2 times:

L4000<cr>

Loop from beginning or Loop-to-marker of the current program x-1 times
alternating direction of motor 1 indexes (x=2 to 65,535). A maximum of 10
nested loop commands can be used per run.
NOTE: When the Loop reaches its last count, the non-loop command directly
preceding the Loop will be ignored.
Memory usage = 3 bytes.
Example:
This example sets a loop to repeat, any previous commands 100-1 times
alternating motor 1 direction every repeat, while repeating the directly preceding
non-loop command 100-2 times: L-100<cr>

ways from beginning or Loop-to-marker of the current program x-1

times (=2 to 65,535). Maximum 10 nested loop commands per run allowed.
Memory usage = 3 bytes.
Examples:
This example sets a loop to repeat all previous commands 4000-1 times:

LA4000<cr>

Consecutively nested loops are equal to the product of their loop values. For
example, the following loops together are equal to 10,000,000-1 (50,000 x 200):
` LA50000,LA200<cr>

Sets the Loop-to-marker at this point in the current program. All looping
commands in the current program that follow will branch to here. Any loop
commands in the program prior to this marker will branch to the beginning of the
program or a previous marker.
NOTE: Multiple markers can be used in a program, the number is only limited by
the program memory available (256 bytes per program).
Memory usage = 1 byte

Resets the Loop-to-marker to the beginning of the current program.
NOTE: Multiple resets can be used in a program, the number is only limited by
the program memory available (256 bytes per program).
Memory usage = 1 byte

x

x

x
x

LA-

LM-2

LM-3

J

JM

x

x

x

oop A lways from beginning or Loop-to-marker of the current program x-1 times
alternating direction of motor 1 indexes (=2 to 65,535). A maximum of 10
nested loop commands can be used per run.
Memory usage = 3 bytes.
Examples:
This example sets a loop to repeat 100-1 times all previous commands
alternating motor 1 direction every repeat: LA-100<cr>

Consecutively nested loops are equal to the product of their loop values. For
example, the following loops together are equal to 2,500,000,000-1 (50,000 x
50,000): LA-50000,LA50000<cr>

Loop once from beginning or Loop-to-marker of the current program,
reversing index direction of motor 1 and motor 2. See "Example Programs"
section for use of this command.
Memory usage = 1 byte.

Jump to the beginning of program number ,x x = 0 to 4. Program number
x will temporarily be the current program, all commands will be executed
starting from the first one that was previously entered into program x. If there is
not any commands in program x, or after executing the last command, the
program will end, and the VXM will send the ready prompt to the host ("^"). The
current program number will still be the program that was originally selected with
a "PMx" or "PM-x" command. Linking multiple programs (maximum of 5)
together is possible by using a jump command, as the last command, to make a
jump to a different program. All looping commands in program x will be local to
this program only.
Memory usage = 2 bytes
Example:
This example will jump to program #1 : J1<cr>

Example:
This example will jump to program #3 and return: <cr>

L

Loop once from the beginning or Loop-to-marker of the current program,
reversing index direction of motor 2. See "Example Programs" section for use of
this command.
Memory usage = 1 byte

JM3

x

21

Pausing and Input/Output Commands

P-

PA

PA-

U0

U1

Px

x

x

x

.

Examples:
This example pauses for 1 second: <cr>

This example pauses for 15 seconds: <cr>

This example pauses for 1 hour: <cr

Example:
This example pauses for 50 milliseconds (0.050 seconds): <cr>

Example:
This example pauses for 15 seconds holding output 1 high: <cr>

user output 1 (I/O,14) will go to +5V for the duration of the pause. Memory usage =
3 bytes.

Example:
This example pauses for 15 milliseconds (0.015 seconds) holding output 1 high:

PA-150<cr>

Wait for a "low" on the user input1holding user output 1 "high" (+5V) while
waiting. A "low" is a voltage less than 0.8 VDC (not to be less than 0V) applied
to I/O,5. User output 1 (I/O,14) will go to +5V for the duration of the wait. A
simple push-button or toggle switch can be used between Gnd (I/O,1) and input
1 (I/O,5) to satisfy this input. The input level must be high for at least 1 ms to be
a valid input. This command is best used when interfacing to other solid-state
logic devices, refer to the "U50" command (Appendix B) for push-button switch
input.
Memory usage = 2 bytes.

22

23

U4

U5

Q

R

N

K

C

D

C

D

User output 1 "low". The user output 1 (I/O,14) will go to 0V. This is the state of
the user output 1 on power-up. This command is used in conjunction with the
"U5" command.
Memory usage = 2 bytes.

User output 1 high. The user output 1 (I/O,14) will go to +5V. This
command is used in conjunction with the "U4" command. Memory
usage = 2 bytes.

Operation Commands

These commands are immediate (not stored), they do not use the VXM's program

memory, and do not need an ending carriage return or comma.

Null (zero) motors 1,2,3,4 Absolute Position Registers. This command can be
used in the Local Jog/slew or the On-Line mode. The "N" command zeros the
position registers that have been counting steps from indexing and/or jog/slewing
the motor(s).

Kill operation in progress. This command will immediately interrupt any running
program. The user outputs will be reset, all looping and hold flags will be reset,
and if a motor is moving it will be stopped immediately. If the motor speed is
above 1000 steps/sec. when the interrupt occurs, the motor may loose position
due to mechanical overshoot (see the "D" command for a less abrupt method to
interrupt indexes). The VXM will transmit the "^" to the host after receiving the
"K" command.

lear all commands from the currently selected program. All setup values, motor
position values, and the state of user outputs

ecelerate to a stop (interrupts current index in progress, default function of Stop
button too). When the VXM receives the single character "D" while it is indexing
a motor, that motor will be decelerated to a stop at the set deceleration. The
motor position prior to decelerating is saved, refer to the "*" command to request
this position. The VXM will then proceed to the next command in the program.
The "D" command has a different function when in the Local Jog/slew mode,
refer to the section on "Digitizing With a Host" in Appendix H for more
information.

will not be altered.

24

E

F

V

X

V

NOTE:

erify Controller's status, when On-Line the VXM sends a "B" to the host if it is
busy, or an "R" if it is ready. The "V" command is used to poll the VXM to see if
it is busy running a program, or ready to receive more commands.

Use of this command is optional, since the VXM automatically transmits a "^"
character to the host when a program has finished.
If the VXM is running a program when it receives a "V" the VXM will respond by
transmitting the single character "B". If the VXM is idle waiting for a command
the VXM will respond by transmitting the single character "R".
When in the Local Jog/slew mode the VXM will respond by sending a "J" if a
motor is not moving and a “b” if a motor is moving.

Send position of motor 1 to the host. When the VXM receives the single
character "X" it will transmit the value from it's motor 1 Absolute Position
Register. Below is what the host would receive if motor 1 is at negative 1200.
This command can be used when the motor is indexing. See the "N" command
for information on zeroing the Absolute Position Registers.

-0001200<cr>

Enable On-Line mode with echo oFF. The single character "F" is used to put the
VXM in the On-Line mode after power-up. No characters will be echoed back to
the host. The VXM will still respond to motor position and status requests. Refer
to the section "Communication Methods " (p.8) for more information.

the single character "^" after completion of the save.

CAUTION: When using the “ ” command power should not be interrupted otherwise
data loss may occur. The host should always wait for the "^" before sending
another command.
The

Send position of motor 1 to the host. When the VXM receives the single
character "Y" it will transmit the value from it's motor 2 Absolute Position
Register. Below is what the host would receive if motor 2 is at positive 9201.
This command can be used when the motor is indexing. See the "N" command
for information on zeroing the Absolute Position Registers.

+0009201<cr>

rsm

Y

rsm

Run save memory, saves setup/ program values to nonvolatile memory.
The VXM will send
Use this command to:
1. To permanently save setup/special function (commands) values
that have been modified.
2. To save programs/commands for stand-alone use.

nonvolatile memory has a limited write life (100,000 erase/write cycles),
therefore, do not use “ ” more than necessary. It would typically be used to
save motor selection that has been updated, or to keep a program in the VXM
for use without a host computer (stand-alone use.)

setx

rsm

Status Request Commands

25

Z

T

M

lst

setB

Send position of motor 3 to the host. When the VXM (Master) receives the
single character "Z" it will transmit (from motor 1 in Slave) the value of the motor
3 Absolute Position Register. Below is what the host would receive if motor 3 is
at negative 20. This command cannot be used when the motor is indexing. See
the "N" command for information on zeroing the Absolute Position Registers.

<cr>

Send position of motor 4 to the host. When the VXM (Master) receives the
single character "T" it will transmit (from motor 2 in Slave) the value of the motor
4 Absolute Position Register. Below is what the host would receive if motor 4 is
at negative 200000. This command cannot be used when the motor is indexing.
See the "N" command for information on zeroing the Absolute Position
Registers. -0200000<cr>

Request Memory available for the currently selected program. The VXM will
send the number of bytes that are unused of the current program. The value will
be 0 to 256 followed by <cr> (carriage return.)

List commands in current program to host (ASCII format.) Returns program
number and memory remaining prior to listing commands.
Example listing:

getMmM Get motor type/size selected for axis ,m m =axis# (1,2,3,4.)

Value returned will be a number between 0 and 6. Refer to the table below for
value to motor model cross reference.

Setup Commands
These commands do not use program memory, they have their own reserved
space.

et motor type/size selected for axis
Value for should be a number between 0 and 6. Refer to the table below for
the proper value to use.

(default=9600) x=9 for 9600 baud,

-0000020

PM0 M252
I1M400

Bx

x

Set RS-232 aud rate to value x.

CAUTION: THE VXM MUST BE SET TO THE EXACT MODEL/TYPE MOTOR(S)
BEFORE OPERATING. IMPROPER SETTINGS CAN CAUSE SEVERE
DAMAGE TO MOTORS AND CONTROLLER.

x Motor Model (Amps)

0 Default (0.4A to 0.7A)

1 Vexta PK245 (1.2A)

2

3

Slo-Syn M061

(3.8A) Slo-Syn M062
(4.7A) Vexta PK264 (3A)

4 Slo-Syn M063
(4.6A) Vexta PK266 (3A)

5 Slo-Syn M091
(4.7A) Vexta PK268 (3A)

6 Slo-Syn M092 (4.6A)

etMmM

26

Examples

" is a carriage return character (<Enter> key on most keyboards). Command
characters are in a rectangle like this:
The "<cr>

®
start end

®
start end

A diagram of the resultant motion of a screw driven linear actuator is included showing
start/end points, direction and commands. A letter over a point on the diagram represents
the function occurring at that point. A “P” is a pause command, “U” user I/O command,
and a “Z” is a motor 3 Index. Numbers shown in the diagrams represent Loop count
values.

The following examples can be keyed into the VXM with a terminal program like
HyperTerminal in Microsoft Windows, or the Velmex COSMOS software. Another method
to send commands is with commercially available languages such as VisualBASIC, C,
LabVIEW, etc.

Example #1

Example #2

Motors run

Motors run

RAM used

RAM used

On-Line

Index

- -

Function

Enable On-Line mode with echo on

Function Incremental

Index Motor #1 400 steps

(1 rev.) CW
1 4

or

Example diagram:

C

Example #3 Motors run RAM used Function

Clear - - Clear all commands from current program

27

¬
end start

Example #4 Motors run RAM used

Index

Function Incremental

Index Motor #2 600 steps
CCW

1 4

or

Example #5 Motors run RAM used

Auto-Reverse

Function

Index Motor #1 both directions1 8

or

end
start

®

¬

Motors run RAM usedExample #6

Repeating Index

Function

Repeating Index pausing 1 second

between Indexes, return to start
1 14

end

end

start
®

¬

1 2 3 4 5 6 7 8 9 1 0

P P P P P P P P P P

Example #7 Motors run RAM used Function

Home to Limit 1 15

start

®

¬

Home Motor 1 to Positive Limit Switch
and move 200 steps from Limit Switch
and zero position

STOPPED BY
LIMIT SWITCH

CAUTION: Positioning may be unreliable and limit switches may be damaged if speeds
above 1000 steps/second are used for homing.

28

Example #9 Motors run RAM used

Rectangle

Function

Rectangle, with Output 1 and

Wait for Input 1 at each corner
2 14

start

®

¬

¯

U

U

U

U

Example #8 Motors run RAM used Function

Raster Scan 2 23

end
start

Raster scan with 1 sec. pauses and
waiting for “G” at the end; then run
backwards through raster scan

®

1 2 3 4 5 6 7
P P P P P P

¬

7 6 5 4 3 2 1
P P P P P P

P P P P P P

U P P P P P P

P P P P P P

®

1 2 3 4 5 6 7
P P P P P P

¬

7 6 5 4 3 2 1
P P P P P P

U P P P Þ P P P

¯Ý

¯Ý

Ý¯

Ü

Þ

1 4

2 3

3 2

4 1

®

Ü

= out

= back

1 2 3 4 5 6 7

7 6 5 4 3 2 1

1 2 3 4 5 6 7

7 6 5
Ü

4 3 2 1

end
start

29

Example #10 Motors run RAM used

Raster Scans

Function

Two Different Raster Scans
using Loop-to-marker

2 27

start
end

®

®

®

¬

¬

¬

¯

¯

¯

¯

¯

¯

1

2

3

4

1

2

3

,,

Example #11 Motors run RAM used

X,Y Matrix

Function

X,Y Matrix Moving Z Axis Up
then Down at each Position

3 30

®

1 2 3 4 5

Z Z Z Z Z

1

2

3

Z Z Z Z Z

Z Z Z Z Z
¯

¬

¬

®

¯

This would do the entire pattern of the above example 5 times:

Troubleshooting

Symptom

Power (Green LED) light does not come on

Motor makes noise but is not moving (Stalled)

Motor is not making any noise and is not moving
(no power to motor)

Circuit Breaker trips when power applied to VXM

Circuit Breaker trips while running motor for a short
time

Circuit Breaker trips while running motor for a long
time

Controller is too hot to touch (It is normal for
Controller and Motor do get very warm when
running continuously)

Motor runs erratically (at lowest speeds goes either
direction, and has low torque at mid speeds)

Motor always goes opposite direction

VXM resets itself and sends “ËB” to the host.

VXM continuously resets itself (flashes power light
slowly) and sends “ËB”s to the host.

Power (Green LED) light flashes rapidly and
continuously on power-up

On-Line light flashing continuously (yellow LED)

Power and On-Line light flash rapidly and VXM
sends “ËM” to the host.

Power and On-Line light flash rapidly and VXM
sends “ËL” to the host.

Power and On-Line light flash rapidly and VXM
sends “ËJ” to the host.

Power and On-Line light flash rapidly and VXM
sends “ËC” to the host.

Possible Cause

Power supply not connected or AC cord not
attached. Power switch not on. Circuit breaker
tripped (white center protruding from breaker.)

VXM not configured for Motor, speed too high,
broken wiring, or jammed mechanism/motor.

Limit switches not connected or set for wrong
type switches

Voltage > 28 volts or polarity reversed

Wrong motor selected. Shorted wiring.

Wrong motor setting. Shorted wiring. Controller
overheating from lack of ventilation or ambient
temperature too high

Wrong motor setting. Lack of ventilation or
ambient temperature too high. NOTE: Motor
should always be mounted for heat conduction.

Broken wire to motor or broken connector pin

”
and “

Directions were inverted with the “
command. Refer to the “getDM
command.

A motor 3 or 4 command was sent to the VXM
when there is not a second VXM connected to
the VXM bus.

A master VXM attempts communication with a
Slave that is off.

setDM
setDM”

Run, Stop, or a Jog input is pulled low. The VXM
does not allow button Jog inputs to be activated
at power up. (release button/input to recover.)

RS-232 overrun error, host sent commands
while VXM was busy sending requested data
(power off/on to recover.)

Program memory is full (send “K” to recover.)

More than 10 nested Loop commands
encountered per run (send “K” to recover.)

More than 4 nested "JMx"s encountered per run
(send “K” to recover.)

When "U9x" missing or motor not the same
when continuous indexing (send “K” to recover.)

30

Whenever you have an issue with the VXM Controller controlling the motor(s), check to be sure the
system is configured correctly.

If the VXM does not appear to be controlling the motors properly, run diagnostics.

31

Specifications
Physical:
Weight.(VXM-1)...2.6 lbs (1.2 kg)
Weight.(VXM-2)...2.9 lbs (1.3 kg)
Height3.27” (83 mm)
Width4.37” (111 mm)
Length6.89” (175 mm)

AC Power Supply
Weight.................1.0 lbs (0.45kg)
Height1.57” (40 mm)
Width2.72” (69 mm)
Length5.14” (131 mm)

Electrical Requirements:

Environmental:

AC Power Supply....... 100-240VAC 2A 50-
60Hz
VXM Controller 24VDC 2.5A

35° C)
Relative Humidity..... 10%-90%
(noncondensing)
Basic Models:
VXM-1 (one motor version)
VXM-2 (two motor version, one motor
operates at a time)

Operating Temperature 35 -95° F (2 -

Velmex COSMOS Software
The COSMOS software for Windows is the easiest way to configure, program, and
become familiar with the features of the VXM controller. COSMOS has the following
capabilities:

Test serial port for communications1.
2.
3.
4.

Retrieve and update setup information
Display status and error messages
Enter commands directly into the VXM

COSMOS is included on the VXM CDROM.

RS-232 Port Configuration: 8 Data, No Parity, 1 Stop, 9600 baud rate default

Appendix A

Editing/Debugging Tools

H

del

res

#

Delete the last command in current program. This command should only be
used for manual editing of programs with a terminal/ terminal program. Use the
“C” command for complete deletion of commands in a program.

Reset VXM to power-up state. This is the exact same state when power is
turned off then back on.

Request the number of the currently selected motor. The VXM will send the
number of last motor run or last command that set a motor value. The value will
be 1 to 4 followed by <cr> (carriage return).

:

*Revised: Command listing only on VXM firmware versions 1.21 & up

32

33

See Also

lst, X, Y, Z, T,
V

Bit 7 6 5 4 3 2 1 0
Decimal
Value

128 64 32 16 8 4 2 1 Decimal
Value

1=high Input
4

Input
3

Input
2

Input
1

Jog
2+

Jog
2-

Jog
1+

Jog
1-

No Inputs
Activated

1 1 1 1 1 1 1 1 255

Input 3
Activated

1 0 1 1 1 1 1 1 191

~

?

$

Get State of User Inputs, Motor 1 and Motor 2 Jog Inputs. Each input represents
one bit of a binary value. The value the VXM sends is represented in the table
below.

In response to this command the VXM sends a single character equal to the
above 8 bit value

Read State of Limit Inputs. Each input represents one bit of a binary value. The
value the VXM sends is represented in the table below.

In response to this command the VXM sends a single character equal to the
above 8 bit value

Get State of User Outputs. Each Output represents one bit of a binary value.
The value the VXM sends is represented in the table below.*

In response to this command the VXM sends a single character equal to the
above 8 bit value

NOTE:

NOTE:

NOTE:

Bit 7 6 5 4 3 2 1 0
Decimal
Value

128 64 32 16 8 4 2 1 Decimal
Value

1=high Limit
4+

Limit
4-

Limit
3+

Limit
3-

Limit
2+

Limit
2-

Limit
1+

Limit
1-

No Limits
Activated or
Connected

1 1 1 1 1 1 1 1 255

Limit 1+ Low 1 1 1 1 1 1 0 1 253

Bit 7 6 5 4 3 2 1 0
Decimal
Value

128 64 32 16 8 4 2 1 Decimal
Value

1=high Output
4

Output
3

Output
2

Output
1

No Outputs
Activated
(default)

0 0 0 0 0 0 0 0 0

Output 2 High 0 0 0 0 0 0 1 0 2

*NEW COMMAND: available only on VXM firmware versions 1.22 & up

34

Appendix B

Advanced Input/Output

Input commands:

U6

U13

U23

U30

U31

single character "W" to the host when this command is executed. The VXM will
wait until a "G" is received from the host before proceeding in the program.
Memory usage = 2 bytes.

Wait for a Jog button to be pressed. This command allows user interaction, by
initiating a jump to a specific program, or allowing the current program to proceed.
The Jog 1- button will cause a jump to program #1.
The Jog 1+ button will cause a jump to program #2.
The “Run” button will cause the current program to continue to the next command
Memory usage = 2 bytes.

Wait for a Jog button to be pressed. This command allows user interaction, by
initiating a jump-and-come-back-for-more to a specific program, or allowing the
current program to proceed.
The Jog 1- button will cause a jump to program #1 and return.
The Jog 1+ button will cause a jump to program #2 and return.
The “Run” button will cause the current program to continue to the next command
Memory usage = 2 bytes.

Wait for a low to high transition on the user input 1. A "high" is a voltage
between +1.5VDC and +5VDC applied to I/O,5. A simple pushbutton or toggle
switch can be used between 0V (I/O,1) and input 1 (I/O,5) to satisfy this input.
The input level must be low (less than 0.8V) for at least 1 ms, and go high for at
least 1 ms to be a valid input. This command is best used when interfacing to
other solid-state logic devices, refer to the "U50" command for push-button
switch input.
Memory usage = 2 bytes.

Wait for a low to high transition on the user input 1 holding user output 1
"high" (+5V) while waiting. A "high" is a voltage between +1.5VDC and +5VDC
applied to I/O,5. User output 1 (I/O,14) will go to +5V for the duration of the wait.
A simple pushbutton or toggle switch can be used between 0V (I/O,1) and input
1 (I/O,5) to satisfy this input. The input level must be low (less than 0.8V) for at
least 1 ms, and go high for at least 1 ms to be a valid input. This command is
best used when interfacing to other solid-state logic devices, refer to the "U51”
command for push-button switch input.
Memory usage = 2 bytes.

35

U32

U33

U50

U51

U90

CAUTION:

Wait for the Jog 1- button to be pressed and debounced.
Memory usage = 2 bytes.

Wait for the Jog 1+ button to be pressed and debounced.
Memory usage = 2 bytes.

Wait for a low to high transition on the user input 1with debouncing for a
mechanical push-button switch. A "high" is a voltage between +1.5VDC
and+5VDC applied to I/O,5. A simple pushbutton or toggle switch can be
used between 0V (I/O,1) and input 1 (I/O,5) to satisfy this input.

When a push-button switch is pressed, the switch's electrical contacts will
bounce off each other a few times before settling into their final position. This
bouncing will produce a series of highs and lows, which could result in several
consecutive wait commands to see these electrical bounces as valid inputs from
just one push-button press. When using the "U50" command, the VXM will filter
out the electrical bounces associated with mechanical switches.
Memory usage = 2 bytes.

Wait for a low to high transition on the user input 1 with debouncing for a
mechanical push-button switch, holding user output 1 "high" (+5V) while waiting.
A "high" is a voltage between +1.5VDC and +5VDC applied to I/O,5. User
output 1 (I/O,14) will go to +5V for the duration of the wait. A simple pushbutton
or toggle switch can be used between 0V (I/O,1) and input 1 (I/O,5) to satisfy
this input.

When a push-button switch is pressed, the switch's electrical contacts will
bounce off each other a few times before settling into their final position. This
bouncing will produce a series of highs and lows, which could result in several
consecutive wait commands to see these electrical bounces as valid inputs from
just one push-button press. When using the "U51” command, the VXM will filter
out the electrical bounces associated with mechanical switches.
Memory usage = 2 bytes.

Wait for a low to high transition on the Run input/button with debouncing for a
mechanical push-button switch. Pressing the front panel Run button or a
connection between I/O,4 and I/O,1 (0V) will activate this input.
Memory usage = 2 bytes.

as the first command if you want a run to
only start with a press and the release of the Run button.

The Run input also starts the current program when the VXM is
in an idle state either On-Line or in Local Jog/slew mode.

Programming Tip: Use the “U90”

See Also

U0, U1
U11,U12,U21,U22 (Appendix T)

Output commands:

U14

U15

U16

U17

U18

U19

U14
2 bytes

U17
2 bytes

U19
2 bytes

User output 2 "low". The user output 2 (I/O,15) will go to 0V. This is the state of
the user output 2 on power-up. This command is used in conjunction with the
"U15" command.
Memory usage = 2 bytes.

User output 2 high. The user output 2 (I/O,15) will go to +5V. This
command is used in conjunction with the " " command.
Memory usage = .

User output 3 "low". The user output 3 (Optional Connection) will go to 0V. This
is the state of the user output 3 on power-up. This command is used in
conjunction with the " " command.
Memory usage = .

User output 3 high. The user output 3 (Optional Connection) will go to +5V. This
command is used in conjunction with the "U16" command.
Memory usage = 2 bytes.

User output 4 "low". The user output 4 (Optional Connection) will go to 0V. This
is the state of the user output 4 on power-up. This command is used in
conjunction with the " " command.
Memory usage = .

User output 4 high. The user output 4 (Optional Connection) will go to +5V. This
command is used in conjunction with the "U18” command.
Memory usage = 2 bytes.

See Also

U4, U5

36

Using the I/O on Slave (Bussed VXMs)

Most of the inputs and outputs on a Slave VXM (in a Master/ Slave bussed configuration)
are available through the Master. To access the user I/O on the second VXM (Slave) from
the Master use the standard “Ux” commands +100. The Master will subtract 100 from the
“Ux” command and send the result to the Slave.

The following are valid commands for I/O addressing on a Slave:

U100
U101
U104
U105
U102
U103
U113

U114
U115
U116
U117
U118
U119
U123

U130
U131

U132
U133
U150

U151

U190

Wait for a "low" on user input 1
Wait for a low on user input 1, holding user output 1 high while waiting
User output 1 "low" (reset state)
User output 1 high
Enable Jog mode while waiting for an input
Disable Jog mode while waiting for an input
Wait for a front panel button to jump to a program or continue: "Motor 1 Jog -"
button to jump to program #1, "Motor 1 Jog +" button
to jump to program #2, "Run" button to proceed in current program.
User output 2 low (reset state)
User output 2 high
Optional User output 3 low (reset state)
Optional User output 3 high
Optional User output 4 low (reset state)
Optional User output 4 high
Wait for a front panel button to jump to a program and come back, or continue:
"Motor 1 Jog -" button to jump and return to program #1, “Motor 1 Jog +" button
to jump and return to program #2, "Run" button to proceed in current program
Wait for a low to high transition on user input 1
Wait for a low to high transition on user input 1, holding user output 1 high while
waiting
Wait for "Motor 1 Jog -" button to be pressed on front panel with debouncing
Wait for "Motor 1 Jog +" button to be pressed on front panel with debouncing
Wait for a low and high on user input 1 with debouncing for a mechanical push-
button switch
Wait for a low and high on user input 1 with debouncing for a mechanical push-
button switch, holding user output 1 high while waiting
Wait for a low to high on the Run button or connection I/O,4 with debouncing for
a mechanical push-button switch

37

Appendix C

The Multifunction User Inputs

setI

getI

set operating mode of User Inputs. The value for x is a
number

between

0

and

255

that

can

be

derived

from

the

table below.

Example:
This example enables binary selection of programs 0 to 3
with user inputs 2 and

Get operating mode of User Inputs. The value returned will
be a number between 0 and 255 (see table below.)

x

* VXM clears these bits automatically ** New feature: Only on VXM firmware
When Setting
Bit 7 See Also

x, y

Program # Input 3 Input 2
0 1 1

1 1 0

2 0 1

3 0 0

1=high (no connection)
0= low (connected to 0V)

The program select feature of inputs 2 and 3 can
be used to select programs 0 to 3 for stand-alone
applications. A rotary type binary switch would be
attached to inputs 2 and 3 for program selection.
Following the program selection, the user would
press/ activate the Run input/button. See truth
table below for function of each input.

38

Bit 7 6 5 4 3 2 1 0
Decimal
Value

128 64 32 16 8 4 2 1 Decimal
Value

Capture
Motor
Position
on Input
4 trigger
0=disable
(bit 1 will
be 0)

Program
Select
with
Inputs 2
and 3
0=disable
(bit 2 will
be 0)

Jump to
Program
4 after
Stop
input
(Input 4)
0=disable

Stop (Input
4)
Decel/Hard
stop
1=Hard
stop
0=Decel to
stop

Low valid
time for
Run and
Input 1
1=100usec
0=1ms

Input 3
Interrupt User
Waits and
Jump to
Program 3

enable/disable
0=disable

Stop (Input 4)
enable/disable
0=disable

“ËS” is sent **
to host when
enabled, and
Stop input

Run
enable
/disable
0=disable

x

Default 0 0 0 0 0 1 1 1 7

Pgm
Select
on
inputs
2,3

0 1 0 0 0 0 * 1 1 67

Record
motor
position
on Input
4

1 0 0 0 0 1 0 * 1 133

Joystick
for
motors
3/4

0 0 0 0 0 0 1 1 3

Jump to
program
4 after
Stop
input

0 0 1 0 0 1 1 1 39

Appendix D

Producing Trigger Outputs

There are three different methods to produce a pulse at an exact position:

1. Index to a position, then while stopped use “PA”, “U1”, or “U5”/”U4” command.

2. Use the Continuous indexing method with the “ “ command to produce a pulse
out instead of stopping at the end of indexes.

3. Set VXM to Pulse every “n” (”n” is a number from 0 to 32,767) number of steps
on output 2

U7

Index, Stop, Output

Example:
This example Indexes 400 steps and makes a pulse on output 1 for 1 second

Continuous Indexing

Pulse width is settable with the

command described on page 43 (default width is 10 �sec.)

Power and On-Line light will flash rapidly and VXM sends “ËC” to the host w

“setPAx”

U7 Start of Continuous Index with pulse output. This command is used when it is
desirable to make several Indexes on one axis without stopping or slowing
between each Index. Instead of stopping a positive going pulse will appear on
user output 2 (I/O,15) at each Index distance.

This pulse
would be used to trigger measurement/sampling equipment. The " " or " "
command must be used as the last command to decelerate to a stop from the
last Index.
Memory usage =2 bytes.

Continuous Indexes have the following limitations:

a) Each Index must be the same motor, and direction should not be changed
unless speed is below 800 steps/sec.

b) Only motors 1 and 2 can be run in this mode

c) The acceleration value set before the “U7” command will be used in the
continuous index.

d) Speed settings, Jumps, Loops, and Output commands can be used
between indexes. Pauses and Wait commands are not allowed.

The hen

a" x" command is missing or motor is not the same.

U9 U91

NOTE:

4

U7 Command Examples:

This example makes an index on motor 1, producing a pulse at positions
1000,1100,1150,1250, and then runs motor 1 back to the start position:

S1M1500,U7,I1M1000,I1M100,I1M50,I1M100,U9,IA1M0<cr>

This example will Index motor 2 and pulse 100 times:
U7,I2M400,LA100,U9<cr>

This example makes an index on motor 2, producing a pulse with speed changes
between each index:
S2M1500,U7,I2M2000,S2M3000,I2M4000,S2M500,I2M800,U9,S2M3000,IA2M0<cr>

U8

U9

Start of Continuous Index sending "@" to the host. This command is the same
as the " " except the single character "@" is transmitted at each Index
distance, instead of a pulse on the user output 2.
Memory usage = 2 bytes.

End of Continuous Index. This command is used, as the ending command of a
Continuous Index, in conjunction with the "U7" or "U8" commands. This
command will start the motor into a deceleration to a stop an equal time and
distance it took to get to the present speed.
Memory usage = 2 bytes.

U7

U91 End of Continuous Index. This command is similar to the “U9” except it creates

an index move in the program for decelerating to a stop. When the VXM sees
this command it will change it into a “U92” followed by an Index that has a value
equal to the distance required to decelerate to a stop.
Memory usage = 6 bytes

U92 End of Continuous Index. This command is similar to the “U9” except it requires

” command described previously will automatically create this command
and the proper index value.

an index move directly after it in the program for decelerating to a stop. When
the VXM sees this command it will look ahead for the index command and use it
as the deceleration distance.
Memory usage = 2 bytes

NOTE: The “U91

See Also

U77, U99, Appendix G

s

Pulse Every “n” Steps
The following command makes it possible to produce a repeating pulse for any number of
motor steps from 1 to 32,767.

Set “Pulse Every n # Steps” on output 2* for axis
Pulse width is settable with the

command (default width is 10 �sec.)

* Master’s output 2 for motor 1 or 2, and Slave’s output 2 for motor 3 or 4.
Pulse will be generated when indexing and when jogging.

“setPAx”

NOTE:

setP1M4

n

n

= 0 to 32,767 (0= disable/default.)

If >1 when this command is set, or motor position is zeroed, (”N”) the
location from the present position where the pulse will occur is 1/2 n going in
either direction. However, if n is an odd value the extra step to produce a
pulse will be in the positive direction (pulse at the integer of 1/2 n going
negative, and pulse at the integer of 1/2 n+1 going positive.)

Example:
This example is will pulse on output 2 for every 4 steps of Motor 1

0

0

0

0

P

P

P

P

P

P

P

P

P

P

P

P P

P

+-

Graphic Representation:

+-

Graphic Representation:

+-

Graphic Representation:

+-

Graphic Representation:

Example:
This example is will pulse on output 2 for every 2 steps of Motor 1

setP1M2

Example:
This example is will pulse on output 2 for every 3 steps of Motor 2

setP2M3

Example:
This example is will pulse on output 2 for every 5 steps of Motor 1

setP1M5

P

P

P

P

PP

P

4

getPmM Get value for “Pulse Every # Steps” for axi .

m= motor# (1,2,3,4)
Value returned will between 0 and 32

getPA Get Pulse width value used for setP Mm n and U7 commands

Value returned will between 1 and 255

1= 10�sec (default)
NEW COMMAND: available only on VXM firmware versions 1.24 & up

4

setPAx

0 microseconds
setPA4

-6
(1=default.) Units are 10�sec increments (10 x 10 seconds)

NEW COMMAND: available only on VXM firmware versions 1.24 & up

Example:
This example will set the pulse width to 4

Example:
This example will set the pulse width to 2 milliseconds

setPA200

0.000040sec

0.002 sec

+5V

+5V

+5V

0V

0V

0V

Output 2

Output 2

Maximum Speed*** = n x
(HIGH* + LOW**)

1

LOW

HIGH

* Pulse width value x command

n i

** Low time needed between pulse
*** Exceeding this speed will truncate pulse timing

4

Appendix E

Getting Motor Position When Moving

It is possible to read motor position directly while motor is in motion using the
commands. At high motor speeds it might not be timely or accurate enough to

transfer motor position over the serial port while the motor is in motion. Another approach
is to use an external trigger to tell the VXM to capture motor position(s) for later retrieval
(after motion has ended.)

The Automatic Deceleration Capture
Every time the motor starts to decelerate to a stop the motor position is saved for later

retrieval with the “ ” command. One use of this feature would be to stop the motor with
the decelerate-to-a-stop command (” ”) when an event has occurred. Then after waiting
for the move to end, (wait for “^”) and reading the position where deceleration started.

D
�

� (Asterisk) Request motor position when the last deceleration occurred. This
position can be from a normal index decelerating to a stop, or an interrupted
index from a "D" (Decelerate to a stop) command or Stop input/button (User input
4.) Below is what the host would receive if the last motor indexing started it’s
deceleration at position negative 14901.

-0014901<cr>

!

The Triggered Position Capture
The VXM can capture motor 1 and motor 2 position(s) either by the host sending a “!” or
from a pulse on input 4 (see Appendix C.) Up to 4 positions will be recorded (one for each
trigger input.) Then after waiting for the move to end, (wait for “^”) the positions can be
requested with t

Capture motor 1 and motor 2 positions into FIFO buffer (4 positions maximum.)
commands to retrieve buffer data after move(s) are complete.

buffer data is automatically zeroed at the start of every run.NOTE:

See Also

X, Y, setIx

x Request captured motor 1 positions from FIFO buffer (all 4 positions.)

NOTE: buffer data is automatically zeroed at the start of every run.

+0000521
+0000919
+0001149
+0000000

Example:
This example shows the values the VXM returned when the “!” was sent at
positions 521,919, and 1149 while motor 1 was indexing.

y Request captured motor 2 positions from FIFO buffer (all 4 positions.)

NOTE: buffer data is automatically zeroed at the start of every run.

-0002004
+0000000
+0000000
+0000000

Example:
This example shows the values the VXM returned when the “!” was sent at
position negative 2004 while motor 2 was indexing.

See Also

X, Y,
setIx

4

Appendix F

More Feedback/ Precision

There are three ways to improve precision and get more information from the VXM.

1. Use the limit switch to establish a home position.

2. Turn on backlash compensation feature if high accuracy is needed when moving
both directions.

3. Set the limit switch output feature to let the host computer know that a positioner
has inadvertently hit a limit switch.

Use Limit Switch for Home
The limit switch on a typical Velmex slide assembly can provide a repeatability of better
than 0.0004” (0.010 mm.) Using a limit switch on initial power-up to set a home is a good
way to insure consistent performance from a precision positioning system. See Appendix
O for setting program 4 to do homing routines at power-up.

end
start

®

¬

STOPPED BY
LIMIT SWITCH

Backlash Compensation Improves Accuracy
Mechanical devices have some clearances between mating parts. Whenever such a
device is commanded to reverse direction there can be some lost motion. The VXM has
the following command to overcome this situation.

Bx
(default). Desired number of “comp” steps can be input directly (x= 2 to 255)* The
VXM can compensate for mechanical backlash by ending every index in the positive
direction. When backlash compensation is on, and a motor makes a negative
Index, “comp” number of steps will be added to the Index. The Motor will then
immediately reverse, indexing positive “comp” number of steps. The VXM will not do
the ending positive “comp” step move if the index is the ImM-0 (Index until negative
limit encountered.)
Memory usage = 0 bytes (this command is immediate, and uses a reserved

memory location)

B<cr> Read acklash Compensation setting, off when value returned=0(default)

The number of “comp” steps will be returned when set**

B

**Only on VXM firmware versions 1.25 & up, older versions return “1” to
indicate on for 20 steps of compensation

4

Indicate Limit Switch Encounter to Detect Faults
A properly connected/ configured limit switch will always stop a motor immediately.
Normally the host computer would not know if a limit switch stopped a move.
With the “O” command described below, the VXM can be set to notify the host computer
that it has hit a limit switch and stop the entire program too.

Ox Indicate Limit Switch Over-travel to the host.

The VXM sends "O" when x=1 and a limit switch is encountered. This command
is useful when the host needs to know if a positioner's travel has been exceeded
due to a motor stall or an index(es) that are too long. When Indicate-Limit-
Switch-Over-travel = 1, the VXM transmits the single character "O" to the host
when an indexing motor activates it's limit switch input.

(this command is immediate, and uses a reserved
memory location)

: Home to limit switch commands never stop the program, but the “O” will be
sent if enabled.

Memory usage = 0 bytes

NOTE

x Value Function

0

1

2

3

Disabled (default)
Send O to host
when hit Limit Stop
program if hit Limit
Send O to host
and Stop program
when hit Limit

O<cr> Read current setting for Indicate Limit Switch Over-travel to the host.

See Also

V, ?, ImM0, ImM-0, Example
#7

4

Appendix G

Complex Profiles & Coordinated Motion

Coordinated Motion
The most common method to move is one axis at a time. Using one VXM controller this is
the only option available. However, with two VXMs connected together with the VXM bus
two axes at a time can be run. Assuming there are two VXMs connected by a bus cable,
the following commands can be utilized to produce complex coordinated motion profiles.

Complex Profiles
The VXM automatically does a simple profile move every time it is required to perform an
index. This profile consists of a acceleration segment, slew segment, and a deceleration
segment. Using the VXM’s Continuous indexing feature more complex motion profiles
are possible. In addition to the Continuous Index commands described in Appendix D,
below are two more specifically for making complex profiles.

U77 Start of Continuous Index with no output. This command is same as the “U7”

except it does not produce the pulse on user output 2.
Memory usage = 2 bytes.

U99 End of Continuous Index with no deceleration. This command is similar to the

"U9" command without the deceleration move after the last index.
Memory usage = 2 bytes.

CAUTION: The motor speed should be below 800 steps/second, when the VXM
executes this command, to prevent an excessively hard stop that may cause a
mechanical overshoot of intended position.

As mentioned in Appendix D, speed commands can be used between indexes in the
continuous index mode. The number of speed changes is limited only by available
program memory space. Changes in speed will occur at the acceleration rate set before
the continuous index mode.

This is a typical example of running two motors sequentially when each axis is on a
different VXM:

To run these two motors (motor 1 and motor 3) the same time requires adding “()” around
the indexes. This example will combine the index commands to run simultaneously:

Combine Index commands to run simultaneously on two VXM controllers
connected by VXM bus.

I1M400,I3M800,R

i3,i1,..
2 bytes

Example:
.

(I3M800,I1M400,)R

= index commands, slave motor (3,4) first.
Memory usage =

(i3,i1,..)

4

Example:
This will not run

the motors same time!

Master/Slave Associated Programs*
Two VXM controllers that are bussed together can be set to execute entire programs
simultaneously. The procedure to coordinate VXM program to VXM program is as
follows:

1.
2.

Transfer a program to the Slave using “[]” Program
associate the Master to the Slave with the “ ” command*PMAx

[i1,i2...] Send data to Slave through the Master. = commands for Slave.
Status requests, ”R”, and “ ” commands are not allowed.

i1,i2...
NOTE: Q

PMA

PMA-

PMA255

x

x

Program associate program number in Master to the same program

number in the Slave. Program x in the Slave will run the same time when

Program associate all programs in the Master to all the programs in the

Slave except for program number in the Slave
will run the same time when a program in the Master is run. x= 0,1,2,3,4*

Disable Master/ Slave Program association (default)

x

. Programs numbers exceptx

See Also

U7, U8, U9, U91, U92, Appendix D

There are special Excel spreadsheet files on the CDROM to create the VXM
commands for producing sinusoidal motion, triangles, rectangles with radius/
chamfer corners, and circles.

NOTE:

(I1M400,I3M800,)R

A motor 3 or motor 4 index command must be before a motor 1 or motor 2 index
for simultaneous operation to occur.

* CAUTION: Motor 3 or 4 commands should not be used if Program Associate is set to
program 0. A Master uses the Slave’s program 0 memory space to run a
motor 3 or 4 command (I3Mx, I4Mx, S3Mx, etc.) Any existing commands in
the Slave’s program 0 will be erased when running a motor 3 or 4
command!

Appendix H

Advanced Jog Mode

When the On-Line (yellow) light is not lit, the VXM is in the Local/Jog mode. Using the
front panel jog buttons, each motor can be jogged a single step or slewed to a default
speed of 2000 sps (5 revs/sec.) in either direction.

“ ”
“ ” that can be selected by activating input 2

setj
setJ

When a Jog button is pressed the motor moves 1 step (1/400 rev.) If the button is held for
>0.3 second the motor will accelerate to a default speed of 2000 sps.

Pressing/holding the Stop button while using the Jog buttons will hold the speed at 39 sps.

The default speed of 2000 mentioned above is settable by command.
Additionally there is a second jog speed

setjmM0

getjmM

getJmM

Disable jog input for motor This command will deactivate the jog
buttons for motor and the corresponding auxiliary I/O jog inputs.

m.

m
m

Set primary maximum jog speed. x= 1 to 6000 sps (default=2000)
m= motor# (1,2,3,4)

= motor# (1,2,3,4)

Set secondary maximum jog speed. When input 2 is low (I/O,6) this
speed will be the applied maximum jog speed. x= 40 to 6000 sps
(default=2000)
m= motor# (1,2,3,4)

Get the primary maximum jog speed. The value returned will be a
number between 0 and 6000 (default=2000)
m= motor# (1,2,3,4)

Get the secondary maximum jog speed. The value returned will be a
number between 40 and 6000 (default=2000)
m= motor# (1,2,3,4)

set mM

setjmM

See Also

Auxiliary I/O Connection

5

Mtr 1Mtr 2

setj setJ

Primary/Secondary Speeds

(Input 2)

Straight through cable
pins 9 and 15 not required

Optional Digital Joystick

The optional digital joystick allows remote jog control of a one or two axis VXM controller.
The joystick provides four momentary outputs that are connected to the Jog Motor inputs
on the Auxiliary I/O (internally connected to same inputs as the front panel jog buttons.)
See previous page for information on jog function and speed settings.

The joystick without the enclosure is available for OEM applications.

1.45" x 5.75" x 0.85" (Width x Depth x Height)
1.6" (bottom of enclosure to top of joystick lever)

The digital joystick has a button switch connected to Input 2 for toggling between the
primary and secondary settable jog speeds.

The default primary and secondary speeds are by default both set to 2000.

It is possible to disable/remove the button switch if Input 2 is needed for a function
other than jog speed selection. To disable/remove the button, with the button in the out
position, use pliers to pull the button cap off the switch actuator. The switch actuator
should now be below the surface enough to prevent unintended input. An alternate
method to disable the button switch is by clipping off pin 6 on the cables connector.

Enclosure Dimensions:
Overall height:

NOTE:

NOTE:

To VXM Auxiliary I/O

+

+

Digitizing With a Host

The VXM stores its absolute position (relative to when registers were zeroed) in memory.
The absolute registers reflect the accumulated distance from operating the motors in the Jog
mode and/or under program control. These registers can hold from -8,388,608 to +8,388,607
steps.

With a host terminal or computer connected via the RS-232 interface, the VXM can be used
as a digitizer.In the Jog mode the VXM will send motor position when it receives a"D" from the
host.

Here is an example of what the host would receive when Motor 1 is at absolute 201,
Motor 2 is at absolute -1294010, Motor 3 is at absolute 0, and Motor 4 is at 80000:

X+0000201<cr>

Y-1294010<cr>

Z+0000000<cr>

Enabling Jog When a Program is Running

U2

U3

Enable Jog while waiting for an input. This command will allow motor jogging,
with the jog button/inputs, during the following wait commands:
U0,U1,U30,U31,U50,U51, or U90.
Memory usage = 2 bytes.

Disable Jog while waiting for an input (default setting on power-up.) This
command will disable motor jogging during a wait command.
Memory usage 2 bytes.

5

5

The Analog Input

Appendix I

The VXM has a 10-bit analog to digital converter for general use, motor speed setting, or
for use with the optional Analog Joystick (see Appendix J.)

The analog reference voltage is the internal +5VDC which is also used for the VXM’s
internal logic. This +5VDC is brought out on I/O pin 2 for use with additional analog
circuitry.

The analog input (Ain) voltage must not exceed the +5VDC

By default the voltage at the analog input Ain (I/O,3) is +2.5VDC. The digital value of the
Ain can be read directly with the “@” command. Since this is a 10-bit converter, the
2.5VDC would be equal to 512 (½ of 1024.) Connecting Ain to the +5VDC would return a
value of 1024. If Ain is connected to 0V (I/O,1) the returned value will be 0.

There is a ± 2 digit margin for conversion/ circuitry error

External potentiometers should be between 2K and 10K ohms.

CAUTION:

NOTE:

Internally Ain has a 100K ohm resistor to the +5VDC, and a 100K ohm resistor to 0V.
There is also a 100 ohm resistor between the converter and Ain.

@ Read user analog input value Ain (I/O,3.) The value returned will be a number
between 0 and 1024.

1,2,3,4,5,6,11,12,13,14,15,21,22,23,24,31,32,33,41,42,51.
See table (following) to determine actual range of spe
ed. Memory usage = 3 bytes.

Example:
This example proportions the full range of the analog input to a speed range
from 1000 to 3000 steps/sec for motor 1.

<cr>

1,2,3,4,5,6,11,12,13,14,15,21,22,23,24,31,32,33,41,42,51.
See table (following) to determine actual range of spe
ed. Memory usage = 3 bytes.

S1M-12

m= motor# (1,2,3,4) =speed range:

Set Speed to motor m from analog input value and range (100% power),x
m= motor# (1,2,3,4) x=speed range:

mSet Speed to motor from analog input value and range (70% power),x
x

mM

mM

5

x Speed Range
(steps/sec.)

1

2

3

4

5

6

1 - 1000

1 - 2000

1 - 3000

1 - 4000

1 - 5000

1 - 6000

11 1000 - 2000

12 1000 - 3000

13 1000 - 4000

14 1000 - 5000

15 1000 - 6000

21 2000 - 3000

22 2000 - 4000

23 2000 - 5000

24 2000 - 6000

31 3000 - 4000

32 3000 - 5000

33 3000 - 6000

41 4000 - 5000

42 4000 - 6000

51 5000 - 6000

Table for analog assigned motor speed

lst
is stored in a program, the original x value will be kept with the

command. However, when the “ ” command is used to list the program, the x value
displayed will be the steps/sec speed converted from reading Ain.

This feature allows viewing the actual derived speed the VXM is going to use.

NOTE: When a “SmM-x”

+5V (I/O,2)

0V (I/O,1)

Ain (I/O,3)

2K to 10K Ohm Potentiometer
(5K recommended)

Connection to Potentiometer

Appendix J

The Analog Joystick Option

5

The VXM Proportional Speed Joystick provides a precise efficient one, two, three, or four
axis variable speed positioning system when used with one or two VXM Stepping Motor
Controllers.
The Joystick is a compact long life 1 million cycle design packaged in a hand held size
enclosure.
The joystick has two button switches, one for speed range selection, and the other to
select motors 1,3 or 2,4.
To achieve simultaneous motion two VXM Controllers are required for this system. The
VXMs can be either one or two axis versions.
The joystick without the enclosure is available for OEM applications.

1.45" x 5.75" x 0.85" (Width x Depth x Height)
1 (bottom of enclosure to top of joystick lever)

Enclosure Dimensions:
Overall height: .6"

setjAmM0

getjAmM

getJAmM

1 when VXM and joystick ordered the same time

This command will deactivate the joystick

10 when VXM and joystick ordered the same time

m.

Set primary joystick speed range. x= 1 to 24.
See table at right to determine actual range of speed.
m= motor# (1,2,3,4)
NOTE: Factory set to

Disable joystick for motor
for motor m (default.)
m= motor# (1,2,3,4)

Set secondary joystick speed range. x= 1 to 24. When input 2 is low
(I/O,6) this speed range is used by the joystick.
See table at right to determine actual range of speed.
m= motor# (1,2,3,4)
NOTE: Factory set to

Get the primary joystick speed range. The value returned will be a
number between 0 and 24 (default=0)
m= motor# (1,2,3,4)

Get the secondary joystick speed range. The value returned will be a
number between 0 and 24 (default=0)
m= motor# (1,2,3,4)

CAUTION: The joystick must be at it’s self centered position (middle) at
power-up. The VXM reads the joystick value at power-up and assigns this value
as the no motion setting. If the joystick is off-center on power-up, the motor will
start moving when the joystick returns to center.

set AmM

setjAmM

5

x

0

Speed Range
(steps/sec.)
Disable Joystick

1

2

3

1 - 250

2 - 500

3 - 750

4

5

6

7

8

9

4 - 1000

5 - 1250

6 - 1500

7 - 1750

8 - 2000

9 - 2250

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10 - 2500

11 - 2750

12 - 3000

13 - 3250

14 - 3500

15 - 3750

16 - 4000

17 - 4250

18 - 4500

19 - 4750

20 - 5000

21 - 5250

22 - 5500

23 - 5750

24 - 6000

Table for joystick assigned motor speed

setDA

getDA

x

NOTE:

Set Joystick Deadband value. 20 to 100 (default=40)

Setting x to a low value makes it difficult to move just one axis
without inducing motion on the opposite axis. Setting to a high value
produces a noticeable delay when changing direction.

Get Joystick Deadband value. Value returned is a number between 20 to 100
(default=40)

x=

x

By default the joystick operates motor 1 of the Master VXM and motor 1 of the Slave
VXM. If the VXM controls are two motor versions, motor 2 of each VXM can be operated
with the joystick by applying a low on input 3 (I/O,7)

This capability allows four motors to be operated from one joystick.

J

Mtr 1&2
No
Function

Mtr
1

Mtr
2

NOTE:
Pin 5 removed

setjA setJA
Primary/Secondary Speeds
(Input 2)

To VXM Auxiliary I/O

+

(Input 3)

Analog Joystick with One VXM

The optional analog joystick can be used with a single VXM control.
The joystick provides analog outputs for two VXM controls. With a single VXM one output
is not connected resulting in “no function” in the one direction of the joystick.

The analog joystick has a button switch connected to Input 2 for toggling between the
primary and secondary settable jog speeds.

There is also a second button switch connected to Input 3 for alternating between motors
1 and 2.

The default primary and secondary speeds are by default both set to 0 (disabled
joystick.)

NOTE: It is possible to disable/remove the button switch(es) if Input 2 and Input 3 are
needed for another function. To disable/remove the button(s), with the button in the out
position, use pliers to pull the button cap off the switch actuator. The switch actuator
should now be below the surface enough to prevent unintended input. An alternate
method to disable the button switches is by clipping off pin 6 and pin 7 on the cables
connector.

NOTE:

5

Straight through cable pins
9 and 15 not required and
pin 5 must be removed

(Mtrs 3,4)

+

J

1
2

Mtr 1&2Mtr 3&4
VXM1

Auxiliary I/O

VXM2
Auxiliary I/O

(Mtrs 1,2)

Mtrs
1,3

Mtrs
2,4

NOTE:
Special Velmex “Y” cable for
connecting to two VXM
controllers

setjA setJA
Primary/Secondary Speeds
(Input 2)

+

(Input 3)

Analog Joystick with Two VXMs

The joystick provides analog outputs for two VXM controls. A connection to each VXM is
accomplished with a special Velmex “Y” cable.

The analog joystick has a button switch connected to Input 2 for toggling between the
primary and secondary settable jog speeds.

There is also a second button switch connected to Input 3 for alternating between motors
1,3 and 2,4.

The default primary and secondary speeds are by default both set to 0 (disabled
joystick.)

NOTE: It is possible to disable/remove the button switch(es) if Input 2 and Input 3 are
needed for another function. To disable/remove the button(s), with the button in the out
position, use pliers to pull the button cap off the switch actuator. The switch actuator
should now be below the surface enough to prevent unintended input. An alternate
method to disable the button switches is by clipping off pin 6 and pin 7on the cables
connectors.

The joystick will not operate VXM2 if the “Y” cable is not connected to VXM1 or if
VXM1 is off. This is because the common +5V reference voltage for the joystick
comes from VXM1 (pin 2.)

NOTE:

NOTE:

“Y” Cable Pinouts

Joystick VXM1 VXM2
1 1 1
2 2 -
3 3 -
5 - 3
6 6 6
7 7 7
* * * *

* Other connection may pass through
but are not used by the Joystick

** No Other Connections

CAUTION:
If VXM1 is turned
off with VXM2 on,
motor(s) on VXM2
will run!

Use a common
power strip to turn
on/off VXMs

!

Input Diagram Output Diagram

MCU

+5V

1K

2.2K

Input

MCU

+5V

P

N

100

10K

Output

Appendix K

I/O Electrical Specifications
All User I/O inputs and outputs (except limit switch inputs) are TTL levels (0 to +5VDC.)

Outputs are normally low, and can sink and source 20 mA max.

Limit switch inputs are optically isolated. Limit inputs operate on 24VDC through a 10K
ohm resistor to power the LED in the optical isolator (see Appendix N for more
information.)

The +5VDC on I/O,2 is intended for use with additional analog input circuitry. Current
draw should not exceed 75mA.

Never directly connect a VXM I/O to an inductive load, any device that is not within 10 feet
of the VXM, or anything not powered at the same AC source.

Damage due to improperly interfacing VXM controllers to other devices is not covered
under the warranty.

As a minimum precaution against electrostatic discharge (ESD) damage follow these
guidelines:

1. Provide the shortest conductive path possible to earth ground from user
designed panels or enclosures that have switches or buttons the operator will
come in contact with.

2. Use metal panels and enclosures to house buttons or switches electrically
bonded to a protective earth ground.

3. Use shielded cables on all VXM I/O.

4. If no other protective earth ground is available, use the earth ground on the
VXMs Auxiliary I/O connector shell or connector shell on shielded cable.

Inputs have a 2200 ohm resistor to +5VDC, and are activated by connecting to 0V.

NOTE: When Input 4 (Stop) is held low (0V) program will not run.*

Optically isolated relays may be required on all user I/Os to insure long term
reliable operation.

CAUTION:

* New feature: Only on VXM firmware versions 1.21 & up

!

See Also

Auxiliary I/O Connection (page 6)

Optional Auxiliary I/O Breakout Module

The optional auxiliary I/O breakout module is a convenient method to interface to the
VXMs auxiliary I/O. Wire connections can be made to all 15 I/O connections using the
screw type terminal blocks.

Wire size: 26 to18 AWG
Boot material: PVC
Boot dielectric strength: 700 V/mil

Specifications

0.984"

1.
73

8"

2.
40

"

1.30"

Ø0.120"

1(0V)

2(+5V)

3(Ain)

5

678910

11

15

14

13

124

Cable with
all 15 through

Protective
Boot

Wire Access Hole

Optional (2)

Pin# Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0V
+5V
Ain
Run
I1
I2
I3
I4
0V
J1-
J1+
J2-
J2+
O1
O2

Appendix L

Motor Torque Curves

6

0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

30

35

40

45

50

55

60

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Vexta PK245 1.2A

40

60

80

100

120

140

160

180

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Speed

Slo-Syn M091 4.7A
0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

(Torque measured at 100% power settings)

40

60

80

100

120

140

160

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Vexta PK266-03
0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

Motor Torque Curves

6

0

50

100

150

200

250

300

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Speed

Slo-Syn M092 4.6A
0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

(Torque measured at 100% power settings)

20

40

60

80

100

120

140

160

180

T
o

rq
u

e
(o

z
-i
n

)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Vexta PK268-03
0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

90

Vexta PK264-03

40

50

60

70

80
T

o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

Motor Torque Curves (continued)
(Torque measured at 100% power settings)

6

40

50

60

70

80

90

100

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Slo-Syn M061 3.8A
0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

40

60

80

100

120

140

160

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Speed

Slo-Syn M063 4.6A

Motor Torque Curves (continued)
(Torque measured at 100% power settings)

6

0.5 1.25 2.5 5.0 7.5 10 12.5 15

rev/sec

steps/sec

40

60

80

100

120

140

T
o
rq

u
e
(o

z
-i
n
)

1 200 500 1000 2000 3000 4000 5000 6000

Speed

Slo-Syn M062 4.7A

Appendix M

Advanced Motor Setup

6

The VXM applies energy to the motors based on the size of the motor. The physical size
is the important aspect that determines the amount energy the VXM will apply. The size
of the motor is proportional to the motor’s current times it’s inductance.

Motors of the same current are not the same to the VXM. When using motors not listed
for use with the VXM, set the VXM to motor setting that has the same or higher current
times inductance value than the motor you wish to use.

set motor type/size selected for axis m and applies 100% power to

motor in jog mode (normally 70% power), =axis# (1,2,3,4.)
Value for x should be a number between 0 and 6. Refer to the table below for
the proper value to use.

The 100% motor power setting only applies to operation in jog mode. Under
program control the “S” and “SA" speed settings set power to motor.

m

NOTE:

CAUTION: THE VXM MUST BE SET TO THE EXACT MODEL/TYPE MOTOR(S)
BEFORE OPERATING. IMPROPER SETTINGS CAN CAUSE SEVERE
DAMAGE TO MOTORS AND CONTROLLER.

See Also

setMmMx, getMmM

x Motor Model (Amps)

0

1

Default (0.4A to

Vexta PK245

2

3

Slo-Syn 061

Slo-Syn M062

Vexta PK264

4 Slo-Syn M063

Vexta PK266

5 Slo-Syn M091

Vexta PK268

6 Slo-Syn M092 (4.6A)

6

Setting for other Motors
The VXM can be used with motors not listed in the table on the previous page. Motors

that are compatible with the VXM must meet the following criteria:

Two important specifications are needed about the motor to be used with the VXM. The
motor’s Unipolar per phase current rating in amps, and the motor’s inductance rated in
Millihenries (MH.) Refer to the motor manufacturer’s data sheet to obtain this
information.

Multiply the current (I) times the inductance (L) to arrive at a product value (IxL) to
compare in the table below.

1. 6 or 8 wire permanent magnet step motor
2. Motor rated at a unipolar per phase current of 0.4 to 4.7 Amps

If the motor you want to use does not meet the above requirements,
STOP!The motor is not compatible with the VXM.

When determining the VXM value x from the table below, the motor must
be within both the current range and the IxL product.

CAUTION: THE VXM MUST BE SET CORRECTLY BEFORE OPERATING.
IMPROPER SETTINGS CAN CAUSE SEVERE DAMAGE TO MOTORS AND
CONTROLLER.

x

0

1
2

3

4

5
6

Unipolar
Current Rating
0.4 to 0.7 Amps
0.8 to 2 Amps
2.5 to 4 Amps
1.5 to 1.7 Amps
3.5 to 4.7 Amps
1.8 to 2.0 Amps
3.5 to 4.7 Amps
3.5 to 4.7 Amps
3.5 to 4.7 Amps

Current Inductance Product
(I x L)
1 to 14

3.3 to 10
2.4 to 3.6
13 to 14

3.7 to 5.1
11 to 12

5.2 to 6.9
7.0 to 12.5
12.6 to 13

Appendix N

Limit Switches and Home Switches

6

The VXM by default recognizes normally closed (N/C to run) limit switches. The default
mode is auto-detect normally closed switches. If the VXM is used with normally open or
with a home switch, the limit switch mode will need to be changed. The following
command sets the operating mode of the limit switch inputs.

getLmM

= motor# (1,2,3,4)

= motor# (1,2,3,4)

Set Limit Switch mode for axis m, m

m

x
0= Auto-detect N/C to run (default)*
1= Enabled N/C to run
2= Disabled N/C for Home Switch use
-1= Enabled N/O to run
-2= Disabled N/O for Home Switch use

, valueGet Limit Switch mode setting for axis m
returned is either -2,-1,0,1,2 (default=0)

It is important to understand how a home switch works, and what programming procedure
to use to get a high degree of precision and accuracy obtainable by these switches.
Repeatability of 1 motor step is achievable if the proper procedures are followed when
referencing to a home switch.

The most common home switch used on rotary tables is a magnetic reed type sensor. The
magnetic sensor is usually connected directly to the positive and negative limit switch
inputs on the VXM.

Home switches have an active area of several degrees. Because of this large area where
the switch is activated, it is important to always approach the switch from the same
direction when homing.

Sensor

Magnet

Activated Area (20 B4800 Rotary

 30�B5990 Rotary)

Rotary
Table

Using Home Switch on Rotary Tables

Limit switch inputs are optically
isolated, from the main control logic of
the VXM, as shown in the diagram at
the right.

VXM

+24V
10K

External
Limit

To MCU

2x per motor

6

See Also

Limit Switch Wiring (page 6)

Magnetic Reed Switch Wiring
(Activated in both directions)

Procedure to configure the VXM for use with a home switch:
(For rotary tables only, see page 27 & 46 for linear actuator homing example)

Programming sequence for homing to the switch:
(For rotary tables only, see page 27 & 46 for linear actuator homing example)

1. Determine which axis (axes) will be connected to a home switch and connect motor,
limit cables, and set VXM for motor type/model attached.

2. Set limit switch function to a value of -2. Example to set motor 1 for use with a
normally open home switch:

1. Set a speed for homing (maximum of 1000.) Always use this selected speed for
homing to maintain repeatability.

2.

4.

This example homes motor 1 moving negative direction into home switch and zeroes
position:

setL1M-2

rsm

<cr>

3. Run the “ ” command to permanently save limit setting(s)

3. Set an Index to move back from home switch area to insure table will be totally out of
activated area of the switch before doing final homing. Indexing 4000 steps should be
adequate to move beyond the active switch area.

desired.

This example homes motor 2 moving positive direction into home switch and zeroes
position 1000 steps away from switch:

1

2

3
4

Sensor

Magnet

Limit Connector
Amp 1-480703-0

Controller Mode

Appendix O

The VXM has a main mode register that can be set with the “setDMx” command.

Bit 7 6 5 4 3 2 1 0
Decimal
Value

128 64 32 16 8 4 2 1 Decimal
Value

Insert/Combine

P r o g r a m # 4

on 1st
Run

Set
This
VXM
as
Master

Invert
Motor 4
Direction

Invert
Motor 3
Direction

Emulate
NF90

Invert
Motor 2
Direction

Invert
Motor 1
Direction

1 x

Default 0 0 0 0 0 0 0 1 1

Emulate
older
NF90

0 0 0 0 1 0 0 1 9

getDM

set operating mode of VXM. The value for x is a number between 0

and 255 that can be derived from the table below.

Example:
This example would invert the direction of motor 1 from the standard.

Get operating mode of VXM. The value returned is a number between
0 and 255 (see table below.) default=1

setDMx

Always 1

Use this feature for homing VXM
every power-up in stand-alone
applications.
Put home routine in program #4.
First run after power up will run
program # 4 first.

” command. This commandThe VXM can be set back to factory defaults with the “
will erase all programs, modes, and motor settings.

setD0

setD0 Set VXM back to factory defaults
All programs, settings, motor selections will be erased

The VXM will send

CAUTION:

NOTE: “ËN” to the host indicating memory has been erased

There is three special commands that get additional status from the VXM

getD0

getD1

getD2

Gets the VXM’s firmware version in the format X.XX

Gets the VXM’s firmware date code in the format XX-XX-XX (month,day,year)

Returns 2 if system is a single VXM, returns 4 if VXM is a Master with a
detected Slave.

G

This command would be beneficial when the VXM is used with a Serial to
IEEE488 converter. The terminator on the Converter should be set to "CR".

A <cr> will not be added to the "B", “b” or "J" response to a "V"

command.

NOTE:

See Also

E, F

ImMx

ImM-x

Set steps to incremental Index motor CW (positive), m= motor# (1,2,3,4), x=1 to

Read and assign analog input value to motor m speed (70% power), x=speed
range (is 100% power)

Select Program number x, x= 0 to
Select and clear all commands from Program number x, x= 0 to
Request the number of the current Program
Program Associate program x in Master to program x in Slave (Linked VXMs start
the same time) -x or x =255 is disable
Request the current program associate number

Jump to the beginning of program number x, x= 0 to
Jump to the beginning of program number x and come back for More after
program x ends, x= 0 to
Similar to JMx except automatically moves back from absolute indexes after
program x ends: For pick-and-place within matrix looping patterns

Motor commands:

Program management commands:

Special looping/branching commands:

I

16,777,215
Set steps to incremental Index motor CCW (negative), m= motor# (1,2,3,4), x=1
to 16,777,215
Set Absolute Index distance, m=motor# (1,2,3,4), x= ±1 to ±16,777,215 steps
Index motor to Absolute zero position, m=motor# (1,2,3,4)
Zero motor position for motor# m, m= 1,2,3,4
Index motor until positive limit is encountered, m=motor# (1,2,3,4)
Index motor until negative limit is encountered, m=motor# (1,2,3,4)
Set Speed of motor (70% power), m= motor# (1,2,3,4), x=1 to steps/sec.
(is 100% power)

Acceleration/deceleration, m= motor# (1,2,3,4), x=1 to 127.

Loop continually from the beginning or Loop-to-marker of the current program
Sets the Loop-to-marker at the current location in the program
Resets the Loop-to-marker to the beginning of the current program
Loop from beginning or Loop-to-marker x-1 times (x=2 to 65,535), when the loop
reaches its last count the non-loop command directly preceding will be ignored
Loop from beginning or Loop-to-marker x-1 times, alternating direction of motor 1,
when the loop reaches its last count the non-loop command directly preceding will
be ignored
Loop Always from beginning or Loop-to-marker x-1 times (x=2 to 65,535)
Loop Always from beginning or Loop-to-marker x-1 times, alternating direction of
motor 1
Loop once from beginning or Loop-to-marker reversing index direction of motor 2
Loop once from beginning or Loop-to-marker reversing index direction of motor 1
and motor 2

AmMx
IAmM0
IAmM-0

ImM-0

AmMx

L0
LM0
LM-0
Lx

L-x

LAx
LA-x

LM-2
LM-3

ImM0

SmMx 6000
SAmMx

PMx

Jx
JMx

4
4

4

4

SmM-x
SAmM-x

PM-x
PM
PMAx

PMA

JM-x

Appendix P

VXM Comparison to NF90/ VP9000

7

Different input/output/range/additional values from VP9000�

�Different command/ function for NF90 mode

Legend:

�New Commands for VXM not available on VP9000 or NF90

Pausing and input output commands:
Px

PAx

U4
U5
U6

U8
U9

U14
U15

U32
U33

Pause x tenths of a second, (x=0 to 65,5350) tenths of a millisecond when x is
negative
Pause x tenths of a second (x=0 to 65,535, 10 μsec pause when x=0) Altering
output 1 high for duration of the pause, tenths of a millisecond when x is negative
Wait for a " " on user input 1
Wait for a on user input 1, holding user output 1 high while waiting
Enable Jog mode while waiting for an input
Disable Jog mode while waiting for an input
User output 1 "low" (reset state)
User output 1 high
Send "W" to host and wait for a "G" to continue
Start of Continuous Index with μsec pulse on output 2
Start of Continuous Index with no output
Start of Continuous Index sending "@" to the host
End of Continuous Index with autodecel to stop
End of Continuous Index with auto-generate a deceleration Index as next
command
End of Continuous Index using next Index for deceleration to stop
End of Continuous Index with instantaneous stop
Skip next command if input 1 is high
Skip next command if input 2 is high
Wait for a front panel button to jump to a program or continue: "Motor 1 Jog -"
button to jump to program # " button
to jump to program # " button to proceed in current program.
User output 2 low (reset state)
User output 2 high
Optional User output 3 low (reset state)
Optional User output 3 high
Optional User output 4 low (reset state)
Optional User output 4 high
Skip next command if input 1 is low
Skip next command if input 2 is low
Wait for a front panel button to jump to a program and come back, or continue:

" button to jump and return to program #1, “Motor 1 Jog +" button
to jump and return to program #2, "Run" button to proceed in current program
Wait for a transition on user input 1
Wait for a transition on user input 1, holding user output 1 high while
waiting
Wait for "Motor 1 Jog -" button to be pressed on front panel with debouncing
Wait for "Motor 1 Jog +" button to be pressed on front panel with debouncing

on user input 1 with debouncing for a mechanical push-
button switch

on user input 1 with debouncing for a mechanical push-
button switch, holding user output 1 high while waiting

on the Run button or connection I/O,4 with debouncing for
a mechanical push-button switch

U0
U1

U7

U11
U12
U13

U22
U23

U30
U31

U50

U51

U90

Different input/output/range/additional values from VP9000

low
low

10

1, "Motor 1 Jog +
2, "Run

"Motor 1 Jog -

low to high
low to high

Wait for a low and high

Wait for a low and high

Wait for a low to high

�

U2
U3

�Different command/ function for NF90 mode

U77

U91

U92
U99

U16
U17
U18
U19
U21

Legend:

�New Commands for VXM not available on VP9000 or NF90

7

Operation commands:

Status request commands

Q
R
N
K
C
D
E
F
G

:

X
Y
Z
T

M
#

Quit On-Line mode (return to Local mode)
Run currently selected program
Null (zero) motors 1,2,3,4 absolute position registers
Kill operation/program in progress and reset user outputs
Clear all commands from currently selected program
Decelerate to a stop (interrupts current index/ program in progress)
Enable On-Line mode with echo "on"
Enable On-Line mode with echo "off"
Enable On-Line mode with echo off Grouping a <cr> with "^", ":", "W", "O"

Jog/slew mode, or “b” if Jog/slewing
Send current position of motor 1 to host (Motor can be in motion)

position of motor 2 to hostSend
Send
Send

position of motor 3 to host
position of motor 4 to host

�

V

responses; Also Go after waiting or holding
Put Controller on Hold (stop after each command and wait for go)
Record motor positions for later recall with “x”,”y” commands
Software reset controller
Delete last command

Verify Controller's status, VXM sends "B" to host if busy, "R" if ready, "J" if in the

current
current
current

(Motor can be in motion)
(Motor must be stationary)
(Motor must be stationary)

Send last 4 positions of motor 1 to host that were captured by the “!” command
or Input 4 trigger
Send last 4 positions of motor 2 to host that were captured by the “!” command
or Input 4 trigger
Request Memory available for currently selected program
Request the number of the currently selected motor
Request the position when the last motor started decelerating (shows position
when "D" command or Stop/User input 4 used)
Read state of limit switch inputs for motor 1 and 2 (8 b i t binary value)
Read state of User Inputs, Motor 1 and 2 Jog Inputs (8 bit binary value) Read
state of User Outputs (8 bit binary value)
Read user analog input value
Read Backlash compensation setting
Read Indicate limit switch setting

Read mode/version
Read Joystick Deadband setting
Read first range Jog Speed for motor m. for Joystick range

for Joystick
setting
Read second range Jog Speed for motor m.
range setting
Read mode of limits for motor m
Read motor type/size selected for axis m
Read “Pulse Every x # Steps” value for axis m
Read Pulse width used by setPmMx and U7
Read operating mode of user inputs
List current program to host (ASCII text)

H
!
res
del

x

y

~
$
@
B
O
getDx
getDA
getjmM getjAmM

getJmM getJAmM

getLmM
getMmM
getPmM
getPA
getI
lst

?

7

Different input/output/range/additional values from VP9000�

�Different command/ function for NF90 mode

Legend:

�New Commands for VXM not available on VP9000 or NF90

Commands for two controls connected by VXM bus:

Jog mode commands

Special function and setup commands:

Memory save commands

NF90 emulation mode:

Combine Index commands to run simultaneously on two VXM controllers
connected by VXM bus
Send data to Slave through Master

Read motor position (Digitize)

Backlash compensation, on when x=1, off when x=0
Indicate limit switch Over-travel to host, off when x=0, VXM sends "O" when x=1

Set VXM/VP9000 or NF90 emulation modes, and other operating
parameters
Set Joystick Deadband value
Set first range Jog Speed for motor m. for Joystick range
setting
Set second range Jog Speed for motor m. for Joystick
range setting
Set limit switch mode for axis m
Set axis m for motor type/size x. Also sets default (jog/joystick) motor
power to 70%. setMAmMx is 100% power
Set “Pulse Every x # Steps” on output 2 for axis m
Set Pulse width used by setPmMx and U7, x=1 to 255
Set operating mode of inputs
Set RS-232 Baud rate (9=9600, 19=19200, 38=38400)

Run save memory (saves setup/ program values to nonvolatile
memory)

Index motor m to absolute zero position

:
D

VP9000 Commands not supported by VXM:

(i3,i1...

)

[i1,i2...]

setDMx

setDAx
setjmM setjAmM

setJmM setJAmM

setLmMx
setMmMx

setPmMx
setPAx
setIx
setBx

rsm

Legend:

�New Commands for VXM not available on VP9000 or NF90

Bx
Ox

Different input/output/range/additional values from VP9000

and hit limit, x=3 program stops too

�

�Different command/ function for NF90 mode

ImM0
L-0
U2
U3

Sets the Loop-to-marker at the current location in the program
Disable user output when pausing
Enable output when pausing (reset state)

Acceleration/deceleration values will be internally doubled to match NF90’s 2x ramp rate

U10, U40, U41, U60, U61, U70, U71, U72,
U73, { }, %, &

7

Feature
Addressable Axes/ Control

Motor Compatibility

Motor output torque as percent of NF90

(M091 Motor)

Steps/ revolution

Speed Range (steps/sec)

Program Storage (memory type)

Range for user

User Inputs

User Outputs

Other Inputs

Other Outputs

User Interfaces

RS-232 Configuration
Default Baud Rate
Maximum Baud Rate

“Pulse Every x # Steps”

VXM
1,2,3*,4*
* By 2nd VXM linked with VXM bus

Size 17 to size 34 (0.4 to 4.7 amp)

400

1 to 6000

5 (RAM/ FLASH)

0 to 32,767

185% @ 0.2 rev/sec
200% @ 5 rev/sec
340% @ 10 rev/sec

Run (Active Low)
In 1** (Active Low) In
2** (Multifunction) In
3** (Multifunction) In
4** (Stop Interrupt) In
A** (Analog)

Out 1**
Out 2**
Optional Out 3**
Optional Out 4**
+5VDC**
** x2 for Linked VXMs

AC/DC Power
Limit Switch (Optically Isolated)

Motor (6 wire Unipolar)

RS-232 (Tx, Rx, Gnd)
Run,Stop, and Jog Keys
Opt. Speed Pot.
Analog Joystick
Remote Jog
Opt. Program Sel. Switch

8 Data, No Parity, 1 Stop
9600
38,400

7

Outline Dimensions

Appendix Q

7

2.24"(57.0mm)

T-SLOTFOR#4ORM4NUT
4PLACES

1.80"(45.7mm)

6.59"(167.4mm)

3.29"(83.6mm)

0.25"(6.4mm)

4.36"(110.7mm)

VXM

7

1.57"(39.9mm)

5.14"(130.6mm)

2.72"(69.0mm)

Power Supply

1 Motor

2 Motor

3 Motor

4 Motor

+ +

++

+ +

++

+ +

++

+ +

++

+ +

++

+ +

++

Appendix R

Model Configurations

For OEM applications contact Velmex Sales/ Engineering
department to find out more about how we can
accommodate your special requirements.

Possible Options:

1.
2.
3.
4.
5.
6.
7.
8.
9.

Half “U” enclosure
Din rail mountable version
Din rail power supply
Lower voltage or battery operation
Integrated input device. (See website for options)
Custom programming
Special cables or connectors
Higher power or lower power
Synchronized motor operation

Rack Panel 1 Motor

Rack Panel 2 Motor

Rack Panel 3 Motor

Rack Panel 4 Motor

+ +

++

+ +

++

+ +

++

+ +

++

+ +

++

+ +

++

There are applications that require moving objects from a common pick location to an
array of placement locations (or vice of versa.) One way to accomplish this would be to
write individual moves to every array position followed by a move to the absolute pick
position. The drawback to this approach is the unwieldy quantity of indexes to write if the
array/matrix pattern is very large. The solution is to use the JM-x command which is
specifically designed for pick and place applications.

except the automatically moves back from
absolute indexes after program x ends.

The pick-and-place within matrix looping
patterns.

JM-

JM-

reverse-direction-flags set by "L-x", "LM-2 LM-3
disabled while in program .

Any absolute indexes encountered
clear all recorded return distances

2 bytes

The JM-x command is similar to the JMx x

x

x

is not suitable for any use other than

Program number x will temporarily be the current program, all commands will be
executed starting from the first one that was previously entered into program x.

The VXM will record motor 1 and 2 absolute indexes while in program x. When
program x ends, the VXM will look ahead to the next incremental index,
combining this index with the return distance of the recorded absolute index of
the same motor. The other motor index recorded will also be moved back it’s
recorded distance.

1. The motor ", and " "
looping commands will be

2. use onlyDo not use absolute indexes for motor 3 or 4 in program x,
incremental indexes for motor 3 or 4.

3. will
that were saved in program

Memory usage =

The following examples are based on loops to produce multiple moves. By modifying the
loop values, the number of moves per row and the number of rows can be changed.

JM-x

x

on return from program x

Appendix S

Pick and Place Using JM-x*

*NEW COMMAND: available only on VXM firmware versions 1.20 & up

8

Motors runExample #12

Pick and Place

Function

Pick from common point and place

in row
1

(Pick)

start/end ®

¬1 2 3 4 5 6 7 8 9 1 0

U4 U4 U4 U4 U4 U4 U4 U4 U4 U4U5

Position 0 1000 8200

8

Pick and Place Using JM-x (continued)

Motors runExample #13

Pick and Place

Function

Pick from common point and place

in 3 rows
2

(Pick)

start/end
®

®

¬

1 2 3 4 5 6 7 8

U4 U4 U4 U4 U4 U4 U4 U4

8 7 6 5 4 3 2 1

U4 U4 U4 U4 U4 U4 U4 U4

1 2 3 4 5 6 7 8

U4 U4 U4 U4 U4 U4 U4 U4

U5

Position 0 1600 7200

¯

¯

1

21200

32400

8

U5,P1

Motors run FunctionExample #14

Pick and Place Pick from common point and place
in rows, Y axis moves tray of parts to next row

2

(Pick)
start/end

1 2 3 4 5

U5

(Pick)

start/end ®

¬
1 2 3 4 5

U4 U4 U4 U4 U4U5

� � � � �

1

1

2

1st Row

2nd Row

Tray

®

¬

U4 U4 U4 U4 U4

8

Pick and Place Using JM-x (continued)

Motors runExample #15

Pick and Place

Function
Pick from common point and place

in rows, Y axis moves tray of parts to next row
3

The following example is the similar to example 14 except for a third axis (Z) moves part
up from pick location and down at place location, there are 3 rows instead of 2, The
program will start again with the Run button.

8

Motors run FunctionExample #16

Pick and Place Pick from rows and place at common location,
Y axis moves tray of parts to next row

3

(Place)

(Place)

start/end

®

¬
1 2 3 4 5

U5 U5 U5 U5 U5U4

®

¬
1 2 3 4 5

� � � � �

1

1

2

1st Row

2nd Row

Tray

U5 U5 U5 U5 U5U4

Appendix T

Stand-alone Methods to Select/Alter Program

Sometimes it is necessary for the user to interact directly with the VXM to select a
program, stop program, change speed, or change to different routine based on an external
input. Below are the four categories and the methods for user interaction with the VXM in
standalone applications.

External Selection of Programs
The default program the VXM uses is program #0. By pressing the Run button or a button
connected to the Run input on the I/O (see Appendix K) program #0 will be started. If a
binary switch is connected, to Inputs 2 and 3, programs #0 to #3 can be selected. See
Appendix C and Application Note #AN103 for more information.

External Setting of Speed
The SmM-x and SAmM-x commands that assign analog input value to motor speed can
be used to vary speeds based on an external potentiometer setting. Refer to Appendix I
and Application Note #AN102 for more information.

Program Interruption
The Stop button or a button connected to Input 4 normally will stop a program in a
controlled manner.
When Stop is pressed, the VXM will decelerate a running motor to a stop, and end the
program. The VXM can be optionally set to run program #4 after stopping. See Appendix
C and Appendix K for more information and other stop settings.

Conditional Branching
Branching/jumping to a specific part of a program, when an external event occurs, is a way
to produce an alternate function from a user input. There are three different ways the
VXM can perform conditional branching:

1. U13 and U23 commands wait for a front panel button or I/O input to jump to a
program or continue: "Motor 1 Jog -" button (I/O,10) will jump to program #1;
"Motor 1 Jog +" button (I/O,11) will jump to program #2; the "Run" button (I/O,4)
will continue in the current program. See Appendix B for more information.

2. Input 3 (I/O,7) is a special interrupt of a wait for input command. For example,
the U0 command will wait for a low on input 1 (I/O,5). When the VXM is waiting
for Input 1 and Input 3 (I/O7) is pulled low the program will immediately branch to
program #3. See Appendix C for more information about enabling/disabling this
feature.

3. commands to skip-next-command-on-input-high/low
are the most versatile conditional branch commands. These commands allow
jumps or speed changes to occur based on the state of input 1 or 2. See the
following page for more information about these commands.

THE STOP BUTTON/INPUT 4 IS NOT AN EMERGENCY STOP. FOR EMERGENCY
STOP, POWER TO VXM SHOULD BE DISCONNECTED.

The U11/U21 and U12/U22

CAUTION:!

8

Skip Next Command If Input High*/Low**

U11

U21

U12

U22

Skip next command if Input 1 (I/O,5) is high.
Memory usage = .

Skip next command if Input 1 (I/O,5) is low.
Memory usage = 2 bytes.

Skip next command if Input 2 (I/O,6) is high.
Memory usage = 2 bytes.

.Skip next command if Input 2 (I/O,6) is
Memory usage = 2 bytes.

2 bytes

low

*NEW COMMANDS: available only on VXM firmware versions 1.22 & up,
** available on VXM firmware versions 1.30 & up

Motors runExample #17

Change Speed

Function

Speed will be set to 2000 if input 1 is low,
or 4000 if input 1 is high

1

Motors runExample #18

Change Program

Function Changes

to program 1 if input 2 is low.

Program 1 runs motor to zero
1

8

Warranty
Stepping Motor Controllers manufactured by Velmex are warranted to be free from
defects for a period of two (2) years on all parts. Velmex's obligation under this
warranty does not apply to defects due, directly or indirectly, to misuse, abuse,
negligence, accidents, or unauthorized repairs, alterations, or cables/connectors that
require replacement due to wear. Claims must be authorized, and a return
authorization number issued before a product can be returned.
The warranty does not cover items which are not manufactured or constructed by
Velmex, Inc. These components are warranted by their respective manufacturer.
Under the above warranty, Velmex will, at its option, either repair or replace a
nonconforming or defective product.

The above warranty is the only warranty authorized by Velmex. Velmex shall in no
event be responsible for any loss of business or profits, downtime or delay, labor,
repair, or material costs, injury to person or property or any similar or dissimilar
incidental or consequential loss or damage incurred by purchaser, even if Velmex has
been advised of the possibility of such losses or damages.

Inasmuch as Velmex does not undertake to evaluate the suitability of any Velmex
product for any particular application, the purchaser is expected to understand the
operational characteristics of the product, as suggested in documentation supplied by
Velmex, and to assess the suitability of Velmex products for this application.

This limited warranty give you specific legal rights which vary from State to State.

Record Controller and Motor information here for future reference:

Model#: VXM-

Serial #:

Motor #1 Motor #2

Motor #4Motor #3

Notes:

By Phone:
By Fax:
Email:
On the Internet:
By mail:

585-657-6151 and 800-642-6446
585-657-6153
info@velmex.com

www.velmex.com and www.bislide.com
Velmex, Inc.
7550 State Route 5 & 2 0
Bloomfield, NY 14469 USA

Copyright 2002 Velmex Inc. All rights reserved. Velmex, the Velmex logo, UniSlide, and BiSlide are trademarks of Velmex Inc. All
other trademarks are the property of their respective owners.

Contact Information

Document # VXM-UM-E5 12-29-04

